Math, asked by Anonymous, 4 months ago

From a point on the ground, the angles of elevation of the bottom and the top of a

transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

Okay Tata :-)​

Answers

Answered by Anonymous
17

Let BC be the 20 m high building

D is the point on the ground from where the elevation is taken.

Height of transmission tower = AB = AC – BC

To Find: AB, Height of the tower

From figure, In right ΔBCD,

tan 45° = BC/CD

1 = 20/CD

CD = 20

Again,

In right ΔACD,

tan 60° = AC/CD

√3 = AC/20

AC = 20√3

Now, AB = AC – BC = (20√3-20) = 20(√3-1)

Height of transmission tower = 20(√3 – 1) m.

Attachments:
Answered by Anonymous
23

Answer:

Let BC be the 20 m high building

D is the point on the ground from where the elevation is taken.

Height of transmission tower = AB = AC – BC

To Find: AB, Height of the tower

From figure, In right ΔBCD,

tan 45° = BC/CD

1 = 20/CD

CD = 20

Again,

In right ΔACD,

tan 60° = AC/CD

√3 = AC/20

AC = 20√3

Now, AB = AC – BC = (20√3-20) = 20(√3-1)

Height of transmission tower = 20(√3 – 1) m.

hope this helps you

Similar questions