from a point p,two tangent AP and PB are drawn to a circle C(O,r) if OP=2r,then find angleAPB.
Answers
from a point p,two tangent PA and PB are drawn to a circle C(O,r) if OP=2r,then find < APB.
from a point p,two tangent PA and PB are drawn to a circle C(O,r) if OP=2r.
We have to show that if OP = 2r than ∆ APB is an equilateral triangle.
PA and PB tangent to a circle
[ OP is a the diameter = 2 × radius ]
Now, PA = PB (tangent from an external point to circle)
< PAB = <PBA —— (1) [ angle opposite to equal sides are equal ]
Now, from ∆ APB , Sum of angle = 180°
From ( 1 ) and ( 2 )
All angles are equal in an equilateral triangle. ( ie 60°)
Hence, ∆ PAB is an equilateral triangle .
Answer:
\sf\bf \: \large{\underbrace{\pink{Required \: answer:}}}
Requiredanswer:
\rm \dag \: \large{\underline{\underline{Question:}}}†
Question:
from a point p,two tangent PA and PB are drawn to a circle C(O,r) if OP=2r,then find < APB.
\rm\dag\large{\underline{\underline{Given:}}}†
Given:
from a point p,two tangent PA and PB are drawn to a circle C(O,r) if OP=2r.
\rm\dag \large{\underline{\underline{To \: Prove:}}}†
ToProve:
We have to show that if OP = 2r than ∆ APB is an equilateral triangle.
\rm \dag \: \large{\underline{\underline{Soluation:}}}†
Soluation:
PA and PB tangent to a circle
\sf < OAP = 90°<OAP=90°
\sf in \: ∆ \: OPAin∆OPA
\sf: \longrightarrow \: Sin < OPA = \frac{ \:OA }{ \: OP} = \frac{r}{2r}:⟶Sin<OPA=
OP
OA
=
2r
r
[ OP is a the diameter = 2 × radius ]
\sf:\longrightarrow Sin < OPA = \frac{1}{2} = Sin 30°:⟶Sin<OPA=
2
1
=Sin30°
\sf < OPA =30°<OPA=30°
\sf Similarly < OPB = 30°Similarly<OPB=30°
\rm < APB = \: < OPA + < OPB = 30° + 30°=60°<APB=<OPA+<OPB=30°+30°=60°
Now, PA = PB (tangent from an external point to circle)
< PAB = <PBA —— (1) [ angle opposite to equal sides are equal ]
Now, from ∆ APB , Sum of angle = 180°
\sf:\longrightarrow \: < PAB + < PBA + < APB = 180°:⟶<PAB+<PBA+<APB=180°
\sf:\longrightarrow \: < PAB + < PAB + 60° = 180°[by (1)]:⟶<PAB+<PAB+60°=180°[by(1)]
\sf:\longrightarrow \: 2 < PAB = 120°:⟶2<PAB=120°
\sf:\longrightarrow \: < PAB = 60° \: \: \: \: \: \: \longrightarrow(2):⟶<PAB=60°⟶(2)
From ( 1 ) and ( 2 )
\rm < PAB + < PAB +APB = 60°<PAB+<PAB+APB=60°
All angles are equal in an equilateral triangle. ( ie 60°)
Hence, ∆ PAB is an equilateral triangle .