Math, asked by dhanushaj8955, 10 months ago

From a quadratic polynamial where zeroes are 3 + root 2 and 3 minus root 2

Answers

Answered by amitkumar44481
1

Question :

From a quadratic polynomial where zeros are 3+√2 and 3-√2.

AnsWer :

x²-6x +7.

Given :

Two roots are given 3+√2 and 3-√2.

To Prove :

Find it's quadratic equation by using two its zeros.

Solution :

Let the zero be,

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:  \:  \: \tt  \boxed{\alpha  \:  \: and  \:  \: \beta .}

 \star  \: \tt \alpha  = 3 +  \sqrt{2}.  \\   \star\tt  \: \beta  = 3 -  \sqrt{2} .

so,

Sum of it's Zeros,

 \tt \alpha  +  \beta  = 3  +  \cancel{ \sqrt{ 2}  }+ 3 -  \cancel {\sqrt{2} }. \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt  = 6.

Product of it's Zeros,

 \tt\alpha  \times  \beta  = 3 +  \sqrt{2}  \times 3 -  \sqrt{2} . \\  \tt\red{ \{( a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt  = 9 - 2. \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt= 7.

Now, We have formula

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{K( {x}^{2}  - sx + p)}

 \star  \tt \:  \: K \:  = constant \: term. \\  \star \tt \:  \: S = sum \: of \: zero. \\ \star  \tt \:  \: P = product \: of \: zero.

Putting value, in it, we get

 \tt \:  \: k( {x}^{2}  - 6x + 7).

Therefore, the quadratic equation whose zeros are 3+√2 and 3-√2 is x²-6x+7.

Let's Verify :

We have equation,

 \:  \:  \:  \tt {x}^{2}  - 6x + 7.

 \tt \: a = 1 \:  ,\: b =  - 6 \: ,and \: c = 7.

 \tt \: D =  {b}^{2}  - 4ac. \\  \:  \:  \:  \:    \tt=  {( - 6)}^{2} - 4 \times 1 \times 7 .\\</p><p>\:  \:  \:  \:  \tt =  36 - 28. \\ \:  \:  \:  \:   \tt = 8.

Now,

\tt x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}  \\ </p><p>\tt x =  \frac{6 \pm \sqrt{8} }{2}   \\ \tt  \:  \:  \:  =  \frac{6 \pm2 \sqrt{2} }{2}  \\</p><p> \:  \:  \:  \tt=  \frac{ \cancel2(3 \pm \sqrt{2} )}{ \cancel2}  \\</p><p>\tt x  = 3 \pm \sqrt{2} .

 \:  \:  \:\boxed{  \tt \alpha  = 3 +  \sqrt{2}  \:  \: and \:  \:  \beta  = 3 -  \sqrt{2}}

\:  \:  \:  \:\:  \:  \:  \: \: \:  \:  \:\:  \:  \:  \: \: \:  \:  \:\:  \:  \:  \: \:  \tt\green{Verified}

Similar questions