Math, asked by Loverupinder, 11 months ago

from a quadratic polynomial whose one of the zeroes is +15 and sum of zeroes is 42​

Answers

Answered by Anonymous
15

\Huge{\underline{\underline{\mathfrak{Correct \ Question \colon}}}}

Form a quadratic polynomial whose sum of zeros is 42 and one of the zero is 15.

\Huge{\underline{\underline{\mathfrak{Answer  \colon}}}}

Given,

  • The sum of zeros is 42

  • One of the zero is 15

Let the unknown zero be \alpha

Implies,

 \large{ \sf{15 +  \alpha  = 42}} \\  \\  \large{ \leadsto \:  \sf{ \alpha  = 42 - 15}} \\  \\  \huge{ \leadsto \:   \boxed{ \boxed{\tt{ \alpha  = 27}}}}

Product of Zeros

 \large {\alpha  \beta  = (15)(27)} \\  \\  \huge{ \rightarrow \:  \tt{ \alpha  \beta  = 405}}

Required Polynomial

 \sf{ {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \beta  } \\  \\  =  \huge{ \sf{x {}^{2} - 42x + 405 }}

#BAL

#AnswerWithQuality

Answered by Anonymous
10

\bold{\Huge{\underline{\boxed{\sf{\purple{ANSWER\::}}}}}}

\bold{\Large{\underline{Given\::}}}}}

In a quadratic polynomial whose one of the zeroes is 15 & sum of the zeroes is 42.

\bold{\Large{\underline{To\:find\::}}}}}

The required quadratic polynomial.

\bold{\Large{\underline{Explanation\::}}}}}

We know that general form of polynomial= Ax² + Bx + C

  • Sum of the zeroes:

\bold{\alpha +\beta =\frac{-b}{a} }

A/q

\bold{15+\beta =42}

\bold{\beta =\:42\:-\:15}

\bold{\beta\:=\:27}

  • Product of the zeroes:

\bold{\alpha \beta =\frac{c}{a} }

Therefore,

\bold{we\:have\begin{cases}\sf{\alpha =15}\\ \sf{\beta =27}\end{cases}}

\bold{\alpha \beta =(15*27)}

\bold{\alpha \beta =405}

Thus,

The required quadratic polynomial is x² - (α+β)x + αβ

→ x² - 42x + 405

Similar questions