Math, asked by progressivestudy, 1 month ago

from a rectangular cardboard ABCD 2 circles and 1 semicircle of a largest side are cut. calculate the ratio between the area of the remaining cardboard and area of cardboard.​

Attachments:

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Let us assume that

↝ The diameter of the circle be 2x units.

According to given figure,

2 circles and one semi-circle of largest side is cut out.

It implies,

Length of Rectangular card - board = 5x units

Breadth of Rectangular card - board = 2x units

So,

\boxed{ \rm{ \: Area_{(Rectangular \: cardboard)} = (5x)(2x) =  {10x}^{2} \: sq. \: units}}

Now, we calculate the area of 2 circles and one semi - circle.

\rm :\longmapsto\:Area_{(circles)} = \pi {(x)}^{2} + \pi {(x)}^{2} + \dfrac{1}{2}\pi {(x)}^{2}

\rm :\longmapsto\:Area_{(circles)} = 2\pi {(x)}^{2} + \dfrac{1}{2}\pi {(x)}^{2}

\rm :\longmapsto\:Area_{(circles)} =  \dfrac{1}{2}[\pi {(x)}^{2} + 4\pi {(x)}^{2}]

\rm \implies\:\boxed{ \tt{ \: Area_{(circles)} = \dfrac{5\pi {x}^{2}}{2}}}

So,

Remaining Area of Rectangular Card - board

\rm \:  =  \:Area_{(Rectangular \:  cardboard)} - Area_{(circles)}

\rm \:  =  \: {10x}^{2} - \dfrac{5\pi {x}^{2}}{2}

\rm \:  =  \: {10x}^{2} - \dfrac{5 \times 22 \times {x}^{2}}{2 \times 7}

\rm \:  =  \: {10x}^{2} - \dfrac{5 \times 11\times {x}^{2}}{7}

\rm \:  =  \: {10x}^{2} - \dfrac{55{x}^{2}}{7}

\rm \:  =  \: \dfrac{70 {x}^{2}  - 55{x}^{2}}{7}

\rm \:  =  \:\dfrac{15 {x}^{2} }{7}

\rm \implies\:\boxed{ \tt{ \: Area_{(Remaining \:  cardboard)} =  \frac{15 {x}^{2} }{7} \: sq. \: units}}

Hence,

 \red{\rm :\longmapsto\:Area_{(Remaining \:  cardboard)} : Area_{(Rectangular \:  cardboard)}}

\rm \:  =  \:\dfrac{15 {x}^{2} }{7}  : 10 {x}^{2}

\rm \:  =  \:\dfrac{3}{7}  : 2

\rm \:  =  \:3  : 14

Similar questions