Math, asked by kk3924290, 7 months ago

From a rectangular sheet 31 cm long and 22 cm wide, a trapezium-shaped piece is cut out. The area of the remaining sheet is 298 cm². One of the parallel sides of the trapezium-shaped piece is 3/5th of the other and the parallel sides are 12cm apart. Find the length of each parallel side.​

Answers

Answered by MotiSani
1

Length of parallel sides is 24 cm and 40 cm

Given:

i) A rectangular sheet 31 cm long and 22 cm wide

ii) A trapezium-shaped piece is cut out from this rectangular sheet, whose one of the parallel sides is 3/5th of the other and the parallel sides are 12 cm apart

iii) The area of the remaining sheet is 298 cm²

To find:

The length of each parallel side.

Solution:

Area of rectangular sheet = lb

                                           = 31*22

                                           = 682 cm²

Area of the remaining sheet = 298 cm²

Therefore,

Area of  the trapezium-shaped piece = 682 - 298

                                                              = 384 cm²

Let one of the parallel sides of the trapezium-shaped piece be x, then the other side = (3/5)x

Height of the trapezium-shaped piece = h = 12 cm

Area of the trapezium-shaped piece

                                                         = (1/2)(Sum of the parallel sides)(height)

                                                         = (1/2)(x + (3/5)x)(12)

                                                         = (1/2)((8/5)x)(12)

                                                         = 48x/5 = 384

=> 48x/5 = 384

=> x = 384*5/48

=> x = 40 cm

Therefore, the other side = (3/5)x

                                          = (3/5)40

                                          = 24 cm

Hence,

length of each parallel side is 24 cm and 40 cm

                                                                                                                #SPJ1

Similar questions