Math, asked by ankur8373, 3 months ago

From a right circular cylinder of radius 7 cm, height 24cm of conical cavity of same base radius and of same height hollowed out. find the volume and whole surface of remaining solid.

spammers stay away....​

Answers

Answered by TheDiamondBoyy
4

{\bf{\underline{\underline \blue{ Answer }}}}

  • Height of cylinder/cone (h)= 24cm
  • Radius of cylinder/cone (r)= 7cm

{\bf{\underline{\underline \purple{ To\:Find }}}}

  • We have to find out the Volume and surface area of remaining solid

{\bf{\underline{\underline \blue{ Solution }}}}

Volume of remaining solid = Volume of cylinder- Volume of cone

:\implies\sf\ V.\ of\ remaining\ solid = \pi r^2 h-\dfrac{1}{3}\pi r^2\ h \\ \\ \\ :\implies\sf\ V.\ of\ remaining\ solid = \dfrac{1}{3}\pi r^2 h\big(3-1\big)\\ \\ \\ :\implies\sf\ V.\ of\ remaining\ solid = \dfrac{1}{\cancel3}\times \dfrac{22}{\cancel{7}}\times \cancel{7}\times 7\times \cancel{24}\times \big(2\big)\\ \\ \\ :\implies\sf\ V.\ of\ remaining\ solid =22\times 7\times 8\times 2\\ \\ \\ :\implies\underline{\boxed{\blue{\sf\ Volume\ of\ remaining\ solid = 2624cm^3}}}

● Surface area of remaining solid = CSA of cylinder+ CSA of cone + Area of top (circular part)

\sf\bigstar\ \ Surface\ Area= 2\pi r h+ \pi r \ell + \pi r^2

\bullet\sf  \ell= \sqrt{r^2+h^2}\\ \\ \longmapsto\sf \ell= \sqrt{(7)^2+(24)^2}\\ \\ \longmapsto\sf \ell= \sqrt{49+576}\\ \\ \longmapsto\sf \ell= \sqrt{625}\\ \\ \underline{\boxed{\sf\ \ell= 25cm}}

Now surface Area :-

:\implies\sf\ Surface\ Area= \pi r\big\lgroup 2h+\ell+r\big\rgroup\\ \\ \\ :\implies\sf\ Surface\ Area= \dfrac{22}{\cancel{7}}\times \cancel{7}\big\lgroup (2\times 24)+ 25+7\big\rgroup\\ \\ \\ :\implies\sf\ Surface\ Area= 22\times \big\lgroup 48+32\big\rgroup\\ \\ \\ :\implies\sf\ Surface\ Area= 22\times 80\\ \\ \\ :\implies\underline{\boxed{\purple{\sf\ Surface\ area\ of\ remaining\ solid= 1760cm^2}}}

Answered by op6382194
0

Answer:

pls see the attachment

Step-by-step explanation:

hope it help uh freind Mark me brainliest

Attachments:
Similar questions