Math, asked by tharrinidanya, 8 months ago

From a rope of length 20 1/2 m, a piece of length 3 5/8 m is cut off. Find the length of remaining rope.​

Answers

Answered by rjrashi5
3

Answer:

135/8m

Step-by-step explanation:

total length of rope- 20 1/2 m

length of rope cut- 3 5/8m

length of remaining rope- length of rope- length of rope cut

20 1/2 = 41/2

3 5/8= 29/8

41/2-29/8

taking LCM of 2 and 8

LCM= 8

164-29/8

135/8m

Answered by Uriyella
5
  • The length of the remaining rope =  16 \dfrac{7}{8} \: m

Given :

  • Total length of a rope =  \sf 20 \dfrac{1}{2} \: m
  • The length of one piece of a rope =  \sf 3 \dfrac{5}{8} \: m

To Find :

  • The length of the remaining rope.

Solution :

First, we need to convert the mixed fraction to simple fraction.

• Total length of a rope.

 \implies \rm20 \dfrac{1}{2}  \: m \\  \\  \implies \rm \dfrac{20 \times 2 + 1}{2}  \: m \\  \\  \implies \rm \frac{40 + 1}{2} \: m  \\  \\  \implies \rm \dfrac{41}{2}  \: m

Hence,

The total length of a rope is  \sf \dfrac{41}{2} \: m

• The length of one piece of a rope.

 \implies \rm3 \dfrac{5}{8}  \: m \\  \\  \implies \rm \dfrac{3 \times 8 + 5}{8}  \: m \\  \\  \implies \rm \dfrac{24 + 5}{8}  \: m \\  \\  \implies \rm \dfrac{29}{8}  \: m

Hence,

The length of one piece of a rope is  \sf \dfrac{29}{8} \: m

Now, we have to find the length of the remaining rope.

The length of the remaining rope = Total length – Length of a piece

Now we have,

\star \:  \:  \: \tt Total \: \: length  =  \dfrac{41}{2}  \: m \\  \\  \star \:  \:  \:  \tt Length \: \: of \: \: a \:  \: piece =  \dfrac{29}{9}  \: m

 \implies  \rm\dfrac{41}{2}  \: m -  \dfrac{29}{8}  \: m \\  \\  \implies \rm \dfrac{41 \times 4 - 29 \times 1}{8}  \: m  \\  \\  \implies \rm \dfrac{164 - 29}{8}  \: m \\  \\  \implies \rm \dfrac{135}{8}  \: m

Now, we have to convert it into mixed fraction.

\sf\Large\qquad\quad16\\ \begin{array}{cc} \cline{2 - 2}\sf 8 )&\sf  \ \ 135\\&\sf  - \:  \:  \:   8\downarrow\\ \cline{2-2}& \sf  \ \ \ \ \:  \:  55\ \ \\ &\sf \  -  \: 48 \\ \cline{2-2} & \sf \ \ \:  \:  007 \\ \cline{2-2} \end{array}

  • Divisor = 8.
  • Quotient = 16.
  • Remainder = 7.

So, the mixed fraction is,

 \implies \rm16 \dfrac{7}{8}  \: m

Hence,

The length of the remaining rope is  16 \dfrac{7}{8} \: m

Similar questions