Math, asked by Vidith, 1 year ago

from a solid cylinder whose height is 2.4 cm and diameter 1.4 cm , a conical cavity of the same height and same diameter is hollowed out. find the total surface area of the remaining solid to the nearest sq. cm

Answers

Answered by Shreya2002
24
Given that,
Height (h) of the conical part = Height (h) of the cylindrical part = 2.4 cm
Diameter of the cylindrical part = 1.4 cm
Therefore, radius (r) of the cylindrical part = 0.7 cm

Total surface area of the remaining solid will be
= CSA of cylindrical part + CSA of conical part + Area of cylindrical base

The total surface area of the remaining solid to the nearest cm2 is 18 cm2.

Vidith: why should we add c.s.a of cone
Vidith: it should be subtracted , because it is hollowed out
Answered by siddhartharao77
46
Given height h = 2.4cm, diameter d= 1.4cm then radius will be d/2 = 1.4/2 = 0.7

We need to find the total surface area of the remaining solid.

We know that Total surface of remaining of the remaining solid = Curved area of cylinder + Area of cylinder + Curved surface area of the cone.

1) Curved area of the cylinder:

   2pirh

= 2 * 22/7 * 0.7 * 2.4

= 10.56cm^2.


2)  Area of cylinder = pir^2

                                = 22/7 * (0.7)^2

                               = 1.54cm^2

Height of cone l^2 = root h^2 + r^2

                                = root (2.4)^2 + (0.7)^2

                                = 5.76+0.49

                                = 6.25

                                = 2.5cm

3) curved surface area of cone = pirl

                                                    = 22/7 * 0.7 * 2.5

                                                    = 5.5cm^2


Total surface area of remaining solid = 10.56 + 1.54 + 5.5

                                                              = 17.6 cm^2

                                                              = ~18 cm^2.


Hope this helps!
Similar questions