Math, asked by TarunSaisundar, 4 hours ago

From a solid cylinder whose height is 4.2cm and diameter 1.4cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid. ​

Answers

Answered by realanshuu
5

Dear Student,

★Answer:

The total surface area of the remaining solid is 37.4cm^{2}

Given:

➥Height (h) of the conical part = Height (h) of the cylindrical part = 4.2 cm

➥Diameter of the cylindrical part = 1.4 cm

★Step-by-step explanation:

Radius = \frac{Diameter}{2}

Radius(r) of the cylindrical part = 0.7 cm

➠ Slant height (l) of conical part = \sqrt{r^{2} +h^{2} }

                                                 = \sqrt{ 0.7^{2} +4.2^{2}

                                                 =  \sqrt{ 0.49 +17.64

                                                 =  \sqrt{18.13

                                                 =  4.2

Total surface area of the remaining solid = CSA of cylindrical part + CSA of conical part + Area of cylindrical base  

                                               = 2πrh + πrl + πr^{2}

                                               = 2 × \frac{22}{7} × 4.2 + \frac{22}{7}  × 0.7 × 4.3 + \frac{22}{7} × 0.7 × 0.7

                                               = 26.4 + 9.46 + 1.54

                                               = 37.4cm^{2}

Answer : The total surface area of the remaining solid is 37.4cm^{2}

                                               

Answered by pranay9018
0

Step-by-step explanation:

Dear Student,

★Answer:

The total surface area of the remaining solid is 37.4cm²

Given:

➥Height (h) of the conical part = Height (h) of the cylindrical part = 4.2 cm

➥Diameter of the cylindrical part = 1.4 cm

★Step-by-step explanation:

 Radius = \frac{Diameter}{2}

Radius(r) of the cylindrical part = 0.7 cm

➠ Slant height (l) of conical part = \sqrt{r^{2} +h^{2} }

= \sqrt{ 0.7^{2} +4.2^{2} }\\=\sqrt{ 0.49 +17.64}\\=  \sqrt{18.13}\\=  4.2

➠Total surface area of the remaining solid = CSA of cylindrical part + CSA of conical part + Area of cylindrical base

= 2πrh + πrl + πr²

 =2 \times \frac{22}{7} \times 4.2 + \frac{22}{7} \times 0.7 \times 4.3 + \frac{22}{7}\times0.7 \times 0.7

= 26.4 + 9.46 + 1.54

= 37.4cm²

➥Answer : The total surface area of the remaining solid is 37.4cm²

Similar questions