Math, asked by UjjwalRaj11, 1 year ago

From a solid cylinder whose height is 8 cm and radius 6 cm , a conical cavity of height 8 cm and of base radius 6 cm is hollowed out. find the volume of height of the remaining solid. Also, find the total surface area of the remaining solid. [Take π = 3.14.]

Answers

Answered by Anonymous
12

ANSWER

Volume of the solid cylinder = 3.14 × 62  × 8

                                               = 3.14 × 36 × 8  

                                               = 904.32  

Volume of the conical cavity =  

                                                = \frac{3.14 \times 6^{2} \times 8}{3}

                                                = 3.14 × 12 × 8

                                                = 301.44  

Volume of resulting solid       = Volume of cylinder - Volume of conical cavity.

                                                = 904.32 − 301.44

                                                = 602.88

∴ The volume of height and total surface of the remaining solid is 602.88.

..........................

βₙₙₙₙₙₙₙₙₙt

pₙeₙsₙ

❤ₙMileyₙ❤

Similar questions