From a solid metallic cylinder of height 24cm, a cone of same height and same base (as cylinder) is taken out. the density of the metal is 10gm per cm^3. if the mass of the remaining portion of the cylinder is 24.64 kg, then find the cost required to paint the remaining portion at a rate of rs 3 per 440 cm^2.
Answers
Step-by-step explanation:
Answer:
Step-by-step explanation:
volume \: of \: remaining \: part \: of \: solid =volumeofremainingpartofsolid=
\pi {r}^{2} h -\Large \frac{1}{3} \small\pi {r}^{2} hπr2h−31πr2h
= \Large \frac{2}{ 3} \pi {r}^{2} h=32πr2h
density \: is \: given \: as \: 10gm | {cm}^{3}densityisgivenas10gm∣cm3
mass \: of \: every \: 1 {cm}^{3} = 10gmsmassofevery1cm3=10gms
it \: is \: given \: thatitisgiventhat
mass \: of \: remaining \: portion = 24.64kgmassofremainingportion=24.64kg
= 24640gms=24640gms
thenthen
\Large\frac{2}{3} \times \frac{22}{7} \times {r}^{2} \times 24 \times 1032×722×r2×24×10
= 24640=24640
{r}^{2} = 49r2=49
r = 7r=7
slant \: height \: of \: cone \: =slantheightofcone=
\sqrt{( {24})^{2} +( {7})^{2} }(24)2+(7)2
\sqrt{625} = 25625=25
surface \: area \: of \: remaining \: area \: =surfaceareaofremainingarea=
2\pi \: rh + \pi {r}^{2} + \pi \: rl2πrh+πr2+πrl
= \pi \times r(2h + r + l)=π×r(2h+r+l)
= 22 \times 7 /7 (2 \times 24 + 7 + 25)=22×7/7(2×24+7+25)
= 22(48 + 32)=22(48+32)
= 22(80)=22(80)
= 1760 {cm}^{2}=1760cm2
cost \: of \: painting \: per \: 440 {cm}^{2} = 3costofpaintingper440cm2=3
cost \: of \: painting \: 1760 {cm}^{2} =costofpainting1760cm2=
1760 \times \Large \frac{3}{440}1760×4403
= 4 \times 3 = 12=4×3=12
\red{\textbf{so, the cost is Rs.12}}so, the cost is Rs.12