Math, asked by eliteenglishschool, 4 months ago

From a solid metallic cylinder of height 24cm, a cone of same height and same base (as cylinder) is taken out. the density of the metal is 10gm per cm^3. if the mass of the remaining portion of the cylinder is 24.64 kg, then find the cost required to paint the remaining portion at a rate of rs 3 per 440 cm^2.​

Answers

Answered by Jiya6282
3

\red{\textbf{Rs .12}}

Step-by-step explanation:

volume \: of \: remaining \: part \: of \: solid =

\pi {r}^{2} h -\Large  \frac{1}{3} \small\pi {r}^{2} h

 = \Large \frac{2}{ 3} \pi {r}^{2} h

density \: is \: given \: as \: 10gm | {cm}^{3}

mass \: of \: every \: 1 {cm}^{3}  = 10gms

it \: is \: given \: that

mass \: of \: remaining \: portion = 24.64kg

 = 24640gms

then

 \Large\frac{2}{3}  \times  \frac{22}{7}  \times  {r}^{2}  \times 24 \times 10

 = 24640

 {r}^{2}  = 49

r = 7

slant \: height \: of \: cone \:  =

 \sqrt{( {24})^{2} +(  {7})^{2}  }

 \sqrt{625}  = 25

surface \: area \: of \: remaining \: area \:  =

2\pi \: rh + \pi {r}^{2}  + \pi \: rl

 = \pi \times r(2h + r + l)

 = 22  \times 7 /7 (2 \times 24 + 7 + 25)

  = 22(48   + 32)

 = 22(80)

 = 1760 {cm}^{2}

cost \: of \: painting \: per \: 440 {cm}^{2}  = 3

cost \: of \: painting \:  1760 {cm}^{2}  =

1760 \times \Large \frac{3}{440}

 = 4 \times 3 = 12

\red{\textbf{so, the cost is Rs.12}}

Answered by xXattitudegirl1Xx
1

Answer:

Step-by-step explanation:

volume \: of \: remaining \: part \: of \: solid =volumeofremainingpartofsolid=

\pi {r}^{2} h -\Large \frac{1}{3} \small\pi {r}^{2} hπr2h−31πr2h

= \Large \frac{2}{ 3} \pi {r}^{2} h=32πr2h

density \: is \: given \: as \: 10gm | {cm}^{3}densityisgivenas10gm∣cm3

mass \: of \: every \: 1 {cm}^{3} = 10gmsmassofevery1cm3=10gms

it \: is \: given \: thatitisgiventhat

mass \: of \: remaining \: portion = 24.64kgmassofremainingportion=24.64kg

= 24640gms=24640gms

thenthen

\Large\frac{2}{3} \times \frac{22}{7} \times {r}^{2} \times 24 \times 1032×722×r2×24×10

= 24640=24640

{r}^{2} = 49r2=49

r = 7r=7

slant \: height \: of \: cone \: =slantheightofcone=

\sqrt{( {24})^{2} +( {7})^{2} }(24)2+(7)2

\sqrt{625} = 25625=25

surface \: area \: of \: remaining \: area \: =surfaceareaofremainingarea=

2\pi \: rh + \pi {r}^{2} + \pi \: rl2πrh+πr2+πrl

= \pi \times r(2h + r + l)=π×r(2h+r+l)

= 22 \times 7 /7 (2 \times 24 + 7 + 25)=22×7/7(2×24+7+25)

= 22(48 + 32)=22(48+32)

= 22(80)=22(80)

= 1760 {cm}^{2}=1760cm2

cost \: of \: painting \: per \: 440 {cm}^{2} = 3costofpaintingper440cm2=3

cost \: of \: painting \: 1760 {cm}^{2} =costofpainting1760cm2=

1760 \times \Large \frac{3}{440}1760×4403

= 4 \times 3 = 12=4×3=12

\red{\textbf{so, the cost is Rs.12}}so, the cost is Rs.12

Similar questions