Math, asked by sushicheck, 1 month ago

From a Solid Right Circular Cylinder of Height 2.4 Cm and Radius 0.7 Cm, a Right Circular Cone of Same Height and Same Radius is Cut Out. Find the surface area of the remaining solidd? of​

Answers

Answered by ayeshakhatoon217
0

Answer:

Answer

Open in answr app

Cylinder : h1=2.4 cm, r1=0.7 cm

Cone : h2=2.4 cm , r2=0.7 cm 

Total surface area of remaining solid  =Total surface area of cylinder − Total surface area of cone

Total surface area of cylinder =2πr(r+h) 

                                                 =2π×107×(107+1024)

                                                 =10014π×31        ....(1)

Total surface area of cone =πr(r+l) 

                                            =π×107(107+h2+r2)

                                            =π×107⎣⎢⎡107+(1024)2+(107)

Step-by-step explanation:

hope it's helpful

*bE sAfE, wOrRy leSs*

Attachments:
Answered by MysticSohamS
0

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

so \: here \: for \: a \: right \: circular \: cylinder \\ height(h) = 2.4 \: cm \\ radius(r) = 0.7 \: cm

a  \: Right \:  Circular \:  Cone  \: of  \: Same \:  Height  \: and \:  Same \:  Radius \:  is  \: Cut \:  Out \\  \\ thus \: dimesions \: of \: cylinder = dimensions \: of \: cone \:  \\ so \: thus \: for \: a \: cone \\ radius = 0.7 \: cm \\ height =2.4 \: cm

then \: \\ we \: know \: that \: \\ length \: of \: cone = h \: square + r \: square

 = (2.4)square + (0.7)square \\  = 5.76 + 0.49 \\  = 6.25 \\  \\ thus \: taking \: square \: roots \: on \: both \: sides \\ we \: get \\ l = 2.5 \: cm

thus \: now \: we \: now \: that \\ total \: surfaceof \: cylinder = 2\pi \: r(h + r) \\  = 2 \times 22 \div 7 \times 0.7(2.5 + 0.7) \\  = 2 \times 22 \times 0.1 \times 3.2 \\  = 44 \times 0.31 \\  = 13.64 \: cm \: square

simiarly \: we \: know \: that \\ total \: surface \: of \: cone = \pi \: r(l + r) \\  = 22 \div 7 \times 0.7(0.7 + 2.4) \\  = 22 \times 0.1 \times 3.2 \\  = 7.04 \: cm \: square

so \: thus \:  \\ total \: surface \: area \: of \: remaning \: solid \: figure = total \: surface \: area \: of \: cylinder - total \: surface \: area \: of \: cone

 = 13.64 - 7.04 \\  = 6.6 \: cm \: square \\  \\ hence \: surface \: area \: of \: remaining \: solid \: figure \: is \: 6.60 \: cm \: square

Similar questions