Math, asked by martinlee, 1 year ago

From a solid right circular cylinder of height 2.4 cm And radius 0.7 cm, a right circular come of same height and same radius is cut out. Find the T. S. A of the remaining solid​

Answers

Answered by anushkaa05
21

Answer:

height of cylinder = 2.4 cm

radius = 0.7 cm

height of cone = height of cylinder = 2.4cm

radius of cone = radius of cylinder = 0.7 cm

TSA of remaining solid = 2πrh + πrl + πr²

= πr ( 2h + l + r )

=22/7 * 0.7 ( 2*2.4 + 0.5 + 0.7)  

=2.2(4.8+1.2)

=2.2(6)

=13.2cm²                                                                                                                                                                          


anushkaa05: if this is helpful pls mark this as the brainliest answer !
Answered by ashmeet8824a
4

Answer:

17.6 cm²

Step-by-step explanation:

Height of the cylinder, h=2.4cm

radius of the cylinder, r=0.7cm

Now, a cone of same height and radius is cut out of the cylinder. Then, the slant height of the cone, l=

 \sqrt{0.7 ^{2} + 2.4^{2}  } =  \sqrt{6.25} = 2.5

So, l=2.5cm

Now, total surface area of the solid so obtained=

Curved Surface area of cylinder+Curved surface area of cone+Area of the base of cyliner=

\pi \: r^{2}  + 2\pi \: rh + \pi \: rl

=

\pi \: r(r + 2h + l)

=22/7 × 7/10( 0.7+ (2×2.4) +2.5)

=22/10(3.2+4.8)=2.2×8 = 17.6 cm²

Solved...

Similar questions