Math, asked by aarushigupta0607, 4 months ago

From a square cardboard of side 21 cm, a circle of maximum area is cut out. Find
the area of the cardboard left.
[Hint. Diameter of circle of maximum area = 21 cm.]​

Answers

Answered by SuitableBoy
46

{\huge{\underline{\underline{\rm{Question}}}}}

★ From a square cardboard cardboard of side 21 cm , a circle of maximum area is cut out. Find the area of cardboard left.

{\huge{\underline{\underline{\rm{Answer\checkmark}}}}}

Given :

  • Side of square = 21 cm

To Find :

  • The Area of left cardboard = ?

Solution :

Since , we have to cut the maximum area ,

So ,

Diameter of the Circle = Side of the square = 21 cm .

  • Side(square) = 21 cm
  • Radius =
  •   \dfrac{21}{2} \sf cm

So ,

 \rm \mapsto \: area_{left \: cardboard} = total \: area - area_{cut}

 \mapsto \rm \: area_{ \: left} = area_{square} - area_{circle}

 \mapsto \rm \: area_{ \: left} =  {(side)}^{2}  -  \pi {r}^{2}

 \mapsto \rm \: area_{ \: left} =  {21}^{2}  -  \frac{22}{7}  \times  {( \frac{21}{2}) }^{2}   \:  {cm}^{2} \\

 \mapsto \rm \: area _{left} = 441 -  \frac{ \cancel{22}}{ \cancel7}  \times  \frac{ \cancel{21} \times 21}{ \cancel2 \times 2}   \:  {cm}^{2} \\

 \mapsto \rm \: area_{left}  = 441 - 11 \times  \frac{3 \times 21}{2}   \:  {cm}^{2} \\

 \mapsto \rm \: area_{left} = 441 - 346.5 \:  {cm}^{2}

 \mapsto\boxed{ \rm \: area_{left}  = 94.5 \:  {cm}^{2} }

So ,

The Area of the cardboard left = 94.5 cm²

_______________

Formula Used :

  •  \sf \: area \: of \: square \:  =  {side}^{2}
  •  \sf \: area \: of \: circle \:  =  \pi  {r}^{2}
  •  \sf \: radius  =  \dfrac{diameter}{2}

Attachments:
Similar questions