Math, asked by arpitamallickmaj, 8 months ago

from a square of length 5 cm the four triangular pieces from the four corners are cut down to form a regular octagon find the area cut from all the corners in total . ​

Answers

Answered by Anonymous
113

\huge{\bold{\star{\fcolorbox{black}{red}{Given...}}}}

  • Area of the square = (5 × 5) sq. units = 25 sq. units.☃️

\huge{\bold{\fcolorbox{black}{lime}{To\:Find...}}}

  • Area of the left (cut) portion...?

______________________________

Let, x units of each side be removed from each corner to form the regular octagon.

✔So, each side of the regular octagon shall be (5 - 2x) units long.

\tt\large{Now, \:if \:we\: consider\: any \:right\: triangle \:formed\: at\: any\: corner:}

_________________

\rm{(x^2) + (x^2) = {(5 - 2x)^2}}

\rm{2(x^2) = 25 - 20x + 4(x^2)}

\rm{2(x^2) - 20x + 25 = 0}

\rm{x = \div{20 ± sqrt{400 - 200}}{ / 4}}

\rm{x = 5 ± \sqrt{12.5}}

__________________

\rm\large{\bold{\underline{Now,\: x \:can't \:be\: larger\: than\: 5.}}}

✔So, \rm\large{x = (5 - \sqrt{12.5} = (5 - 3.5355) = 1.4645.}☃️

_

\tt\large\red{\underline{So,\: total\: area\: removed\: from \:four \:corners}}

\rm\large{= 4*(1 / 2)*(x^2) = 2*(x^2) ≈ 2*{(1.4645)^2} sq\: units\: ≈\: 4.2895 \:sq \:units}.☃️

_

\sf\large{\underline{\pink{If\: this\: is\: rounded\: off \:to \:nearest\: integer, \:the\: total \:area\: removed \:is\: 4 \:sq \:units.}}}☃️✔

Answered by Anonymous
197

ANSWER

\large\underline\bold{GIVEN,}

Area of the square = (5 × 5) sq. units = 25 sq. units.

\large\underline\bold{TO\:FIND,}

  • Area of the left (cut) portion.

\large\underline\bold{SOLUTION,}

Let, \:x \:units\: of\: each\: side \:be\: removed\: from \:each \:corner\: to \:form \:the \:regular\: octagon.

So,\: each\: side \:of\: the \:regular\: octagon \:shall \:be\: (5 - 2x)\: units \: long.

\blue{\text{Now, \:if \:we\: consider\: any \:right\: triangle \:formed\: at\: any\: corner}}

\sf{(x^2) + (x^2) = {(5 - 2x)^2}}

\sf{2(x^2) = 25 - 20x + 4(x^2)}

\rm{2(x^2) - 20x + 25 = 0}

 \sf x=20 \±\sqrt{400}-\frac{200}{4}

\sf{x = 5 \± \sqrt{12.5}}

\sf\mathfrak\red{now,}

 \sf\implies x\:is \:not\:greater\:than\:length\:5cm

\sf\mathfrak\red{so,}

\sf\large{x =(5 -\sqrt{12.5} )= (5 - 3.5355) = 1.4645.}

\large{\boxed{\bf{x =(5 -\sqrt{12.5} = (5 - 3.5355) = 1.4645 }}}

\purple{\text{So,\: total\: area\: removed\: from \:four \:corners}}

\sf\large{= 4×\frac{1}{2}×(x^2) = 2×(x^2) =2×{(1.4645)^2} sq\: units\: =\: 4.2895 \:sq \:units}

\sf\therefore\red{If\: this\: is\: rounded\: off \:to \:nearest\: integer, \:the\: total \:area\: removed \:is\: 4 \:sq \:units.}

\large{\boxed{\bf{ answer\:4sq.units}}}

_________________

ADDITIONAL INFORMATION,

\setlength{\unitlength}{1.6mm}\begin{picture}(5,6)\put(0,35){\line(1,0){35}}\put(0,0){\line(1,0){35}}\put(0,0){\line(0,1){35}}\put(35,0){\line(0,1){35}}\put(17,-2){5cm}\put(18,-2){}\put(35,15){5cm}\put(18,0){  }\end{picture}

DIAGRAM FOR RIGHT ANGLED TRIANGLE,

\setlength{\unitlength}{1.6mm}\begin{picture}(30,20)\linethickness{0.1mm}\put(0,0){\line(0,1){37.5}}\put(0,0){\line(1,0){25}}\put(25,0){\line(-2,3){25}}\end{picture}\put(-32,18){x}\put(-18,-1.5){x}\put(-18.2,20){(5-2x^2)}

Similar questions