Physics, asked by mallayya516gmailcom, 5 months ago

from a uniform square plate the shaded portions areremoved as shown in the figure .Find the coordinates of center of mass of the remaiming plate X -and Y-axes and origin are shown in the figure​

Attachments:

Answers

Answered by shadowsabers03
6

As we know, the position of center of mass of the whole square plate is at \sf{\left(\dfrac{a}{2},\ \dfrac{a}{2}\right)} and so its position vector is \sf{\left<\dfrac{a}{2},\ \dfrac{a}{2}\right>.}

Length of side of each square portion is \sf{\dfrac{a}{4}.}

Clearly we get that the position vector of the center of mass of the square portion in,

  • 1st row and 1st column is \sf{\left<\dfrac{a}{8},\ \dfrac{7a}{8}\right>.}
  • 2nd row and 2nd column is \sf{\left<\dfrac{3a}{8},\ \dfrac{5a}{8}\right>.}
  • 3rd row and 3rd column is \sf{\left<\dfrac{5a}{8},\ \dfrac{3a}{8}\right>.}

Let mass of the square plate be M and each square portion be M'.

Area of square plate,

\sf{\longrightarrow A=a^2}

Area of a square portion,

\sf{\longrightarrow A'=\left(\dfrac{a}{4}\right)^2=\dfrac{a^2}{16}}

Since the square plate is uniform, the areal density of both the square plate and each square portion should be same, i.e.,

\sf{\longrightarrow\dfrac{M}{A}=\dfrac{M'}{A'}}

\sf{\longrightarrow\dfrac{M}{a^2}=\dfrac{M'}{\left(\dfrac{a^2}{16}\right)}}

\sf{\longrightarrow M'=\dfrac{M}{16}}

Then, position of center of mass of the remaining plate is,

\longrightarrow \sf{\bar x}=\dfrac{\sf{M\left<\dfrac{a}{2},\ \dfrac{a}{2}\right>-M'\left<\dfrac{a}{8},\ \dfrac{7a}{8}\right>-M'\left<\dfrac{3a}{8},\ \dfrac{5a}{8}\right>-M'\left<\dfrac{5a}{8},\ \dfrac{3a}{8}\right>}}{\sf{M-3M'}}

\longrightarrow \sf{\bar x}=\dfrac{\sf{M\left<\dfrac{a}{2},\ \dfrac{a}{2}\right>-\dfrac{M}{16}\left<\dfrac{a}{8}+\dfrac{3a}{8}+\dfrac{5a}{8},\ \dfrac{7a}{8}+\dfrac{5a}{8}+\dfrac{3a}{8}\right>}}{\sf{M-\dfrac{3M}{16}}}

\longrightarrow \sf{\bar x}=\dfrac{\sf{\left<\dfrac{a}{2},\ \dfrac{a}{2}\right>-\dfrac{1}{16}\left<\dfrac{9a}{8},\ \dfrac{15a}{8}\right>}}{\sf{\dfrac{13}{16}}}

\longrightarrow \sf{\bar x}=\dfrac{\sf{\left<\dfrac{64a}{128},\ \dfrac{64a}{128}\right>-\left<\dfrac{9a}{128},\ \dfrac{15a}{128}\right>}}{\sf{\dfrac{13}{16}}}

\longrightarrow \sf{\bar x}=\dfrac{\sf{16}}{\sf{13}}\sf{\left<\dfrac{55a}{128},\ \dfrac{49a}{128}\right>}}

\longrightarrow\underline{\underline{\sf{\bar x}=\sf{\left<\dfrac{55a}{104},\ \dfrac{49a}{104}\right>}}}}

Similar questions