Math, asked by User9990, 4 days ago

From a window (h m high above the ground ) of a house in a street , the angle of elevation and depression of the top and the foot of another house on the opposite side of the street are α and β respectively. Show that the height of the opposite house is h(1+tan α tan β)​

Answers

Answered by mathdude500
4

Appropriate Question :-

From a window (h m high above the ground ) of a house in a street , the angle of elevation and depression of the top and the foot of another house on the opposite side of the street are α and β respectively. Show that the height of the opposite house is h(1 + tan α cot β)

\large\underline{\sf{Solution-}}

Given that,

From a window (h m high above the ground ) of a house in a street , the angle of elevation and depression of the top and the foot of another house on the opposite side of the street are α and β respectively.

Let assume that window be at the point A which is at the height of h m from the ground.

So, AB = h m

Let assume that CD be the house on the opposite side of the street.

Let assume that CD = H m

Now, from A, draw AE perpendicular to CD, intersecting CD at E.

Let assume that AE = x m

Now, In right angle triangle AEC

\rm \: tan  \beta   \:  =  \: \dfrac{EC}{AE}  \\

\rm \: tan  \beta   \:  =  \: \dfrac{h}{x}  \\

\rm \: cot  \beta   \:  =  \: \dfrac{x}{h}  \\

\rm\implies \:x \:  =  \: h \: cot  \beta   \\

Now, In right angle triangle ADE

\rm \: tan  \alpha   = \dfrac{ED}{AE} \\

\rm \: tan  \alpha   = \dfrac{H - h}{x} \\

\rm \: tan  \alpha   = \dfrac{H - h}{h \: cot  \beta  } \\

\rm \: H - h = h \: cot  \beta   \: tan  \alpha   \\

\rm \: H  =  h  +  h \: cot  \beta   \: tan  \alpha   \\

\rm \: H  =  h (1 +   \: cot  \beta   \: tan  \alpha  ) \\

Hence, Proved

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions