Math, asked by bhargavikalangi37, 6 hours ago

from any point p on the circle X2+y2-6x-8y+15=0 tangents PA,PB are drawn to the circle X2+y2-6x-8y+20=0 and to the locus of the orthocentre of the triangle PAB is a circle then​

Answers

Answered by dreamrob
1

The value of (a+b-c) is 6

Given,

x^{2} +y^{2} -6x-8y+15=0

x^{2} +y^{2} -6x-8y+20=0

To Find,

We have To Find the value of (a+b-c)

Solution,

Let us consider,

S_{1} = x^{2} +y^{2} -6x-8y+15=0........(i)

compare this equation (1) with the general equation of Circle is :

x^{2} +y^{2} +2gx+2fy+c= 0

so, from that we get,

2g=-6

or, g=-3

and, 2f=-8

or, f=-4

so, Center Coordinate of the circle is = (-g,-f) = (3,4)

and, Circle radius (R)=

\sqrt{g^{2} +f^{2} +c} = \sqrt{9+16+15} \\</p><p>or, R = \sqrt{40} = 2\sqrt{10}

similarly,

S_{2} = x^{2} +y^{2} -6x-8y+20=0.........(ii)

compare this equation (1) with the general equation of Circle is :

x^{2} +y^{2} +2gx+2fy+c= 0

2g= -6

or, g=-3

and, 2f= -8

or, f= 4

so, Center Coordinate of the circle is = (-g,-f) = (3,4)

and radius (r)= r= \sqrt{g^{2} +f^{2} +c} = \sqrt{9+16+20} \\</p><p>or, = \sqrt{45} = 3\sqrt{5}

Now,

(r-R) = \sqrt{45-40} = \sqrt{5} \\

and, AB= \sqrt{16+16} =\sqrt{32}

BD= \frac{\sqrt{32} }{16} = \frac{\sqrt{32}*\sqrt{32}  }{16*\sqrt{32} } \\= \frac{32}{16*\sqrt{32} } = \frac{2}{32}

so, locus of the orthocentre of the ∆PAB is a circle = x^{2} +y^{2} -6x-8y+20=0

compare this with normal form,

x^{2} +y^{2} + ac+ by+c=0

so, a+b-c= -6-8+20 = 6

Hence, the value of (a+b-c) is 6

#SPJ2

Answered by ruthvij1609
0

</p><p>S _{1} \: : \:  {x}^{2}  +  {y}^{2}  - 6x - 8y + 15 = 0 \\ ⇒( - g, - f) = (3,4) \\ r =  \sqrt{ {3}^{2}  +  {4}^{2} - 15 }  \\ ⇒r =  \sqrt{10}

S _{2} \: : \:  {x}^{2}  +  {y}^{2}  - 6x - 8y + 20 = 0 \\ ⇒( - g, - f) = (3,4) \\ R  =  \sqrt{ {3}^{2}  +  {4}^{2} - 20 }  \\ ⇒R =  \sqrt{5}

△POB \: ⇒ \\ PO =  \sqrt{10}  \\ AO = OB = 3 \\ ∠PBO = 90° \\  {PO}^{2}  =  {OB}^{2}  +  {PB}^{2} \\  ⇒{( \sqrt{10} )}^{2}  = {( \sqrt{5} )}^{2} +  {PB}^{2}  \\⇒ PB =  \sqrt{5}  = PA

△PAB \: ⇒ \\ ∠APB = 90° \\  {AB}^{2}  =  {AP}^{2}  +  {PB}^{2} \\  ⇒{(AB)}^{2}  = {( \sqrt{5} )}^{2} +  {( \sqrt{5} )}^{2}  \\⇒ AB =  \sqrt{10}

Orthocentre of a right angled triangle is at its right angle

The locus of △PAB is S₁, (i.e)

{x}^{2}  +  {y}^{2}  - 6x - 8y + 15 = 0

(-g,-f) = (3,4)

radius = 10

Attachments:
Similar questions