Math, asked by onmyway17, 4 days ago

from differentiation -
sin \: x. \: cosec \: x + sec \: x. \: cot \: x
right answer will brainliest ✔✌​

Answers

Answered by lathagowda301
0

Answer:

cosec x - sin x ] [ sec x - cos x ] [ tan x + cotx ] = 1

Top answer · 24 votes

= [ 1sinx - sin x ] [ 1cosx - cos x ] [ sinxcosx + cosxsinx ] = [ 1 - sin^2xsinx ] [ 1 - cos^2xcosx ] [ sin^2x + cos^2xcosxsinx ] = cos^2xsinx. sin^2xcosx

mark me a brilliant

Answered by Anonymous
7

Answer:

-cot(x) cosec(x)

Step-by-step explanation:

Consider the given function,

\rm\sf  f(x) = sin(x) \cdot cosec(x) + sec(x) \cdot cot(x)

We know that:

\boxed{\tt cosec(x) = \dfrac{1}{sin(x)}}

\boxed{\tt sec(x) = \dfrac{1}{cos(x)}}

\boxed{\tt cot(x) = \dfrac{cos(x)}{sin(x)}}

Using these formulas, we get:

\rm\sf  f(x) = sin(x) \cdot\dfrac{1}{sin(x)} + \dfrac{1}{cos(x)} \cdot \dfrac{cos (x)}{sin(x)}

\rm\sf  f(x) = 1 +\dfrac{1}{sin(x)}

\rm\sf  f(x) = 1 +cosec(x)

Now differentiating the function,

\sf\implies f'(x) = \dfrac{d}{dx}(1 +cosec(x))

\sf\implies f'(x) = \dfrac{d}{dx}(1)  +\dfrac{d}{dx}(cosec(x))

Now using the  following formulas:

\boxed{\tt \dfrac{d}{dx}(Costant) = 0}

\boxed{\tt \dfrac{d}{dx}( cosec(x)) = - cot(x) \cdot(cosec(x))}

By using these results, we get:

\sf\implies f'(x) = 0  - cot(x) \cdot cosec(x)

\sf\implies f'(x) = - cot(x) \cdot cosec(x)

So the required answer is -cot(x) cosec(x).

Similar questions