Math, asked by dettuo9, 1 year ago

from each corner of a square of side 4 cm , a quadrant of a circle of radius 1cm is cut and also a circle of diameter 2 cm is .find the area of the remaining portion of the square?

Answers

Answered by MaheswariS
21

\textbf{Given:}

\textsf{From each corner of a square of side 4 cm ,a quadrant of a circle}

\textsf{of radius 1cm is cut and also a circle of diameter 2cm}

\textbf{To find:}

\textsf{Area of the remaining portion of the square}

\textbf{Solution:}

\underline{\textsf{Area of a quadrant}}

\mathsf{=\dfrac{\pi\,r^2}{4}}

\mathsf{=\dfrac{\pi\,(1)^2}{4}}

\mathsf{=\dfrac{\pi}{4}\;cm^2}

\underline{\textsf{Area of the circle}}

\mathsf{=\pi\,r^2}

\mathsf{=\pi\,(1)^2}

\mathsf{=\pi\;cm^2}

\underline{\textsf{Area of the square}}

\mathsf{=side{\times}side}

\mathsf{=4{\times}4}

\mathsf{=16\;cm^2}

\therefore\underline{\textsf{Area of the remaining portion of the square}}

\mathsf{=Area\;of\;the\;square-(4{\times}Area\;of\;a\;quadrant+Area\;of\;the\;circle)}

\mathsf{=16-\left(4{\times}\dfrac{\pi}{4}+\pi\right)}

\mathsf{=16-(\pi+\pi)}

\mathsf{=16-2\pi}

\mathsf{=16-2{\times}\dfrac{22}{7}}

\mathsf{=16-\dfrac{44}{7}}

\mathsf{=\dfrac{112-44}{7}}

\mathsf{=\dfrac{68}{7}}

\mathsf{=9.714\;cm^2}

\textbf{Answer:}

\mathsf{Area\;of\;the\;remaining\;portion\;of\;the\;square\;is\;9.714\;cm^2}

Answered by nethraperla
0

1.answer is 68/7cm square.

Similar questions