Math, asked by AaryanVartak, 3 months ago

From given figure, In ∆ ABC, AB⊥BC, AB =BC, AC = 5√2 then

what is the height of ∆ ABC ?​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\mathsf{In\;\triangle\,ABC,\;AB\perp\,BC,AB=BC\,and\,AC=5\sqrt{2}}

\mathsf{}

\textbf{To find:}

\textsf{Height of triangle ABC}

\textbf{Solution:}

\textsf{Let AB=BC=x}

\mathsf{In\,\triangle\,ABC,}\,\textsf{By pythagoras theorem,}

\mathsf{AC^2=AB^2+BC^2}

\mathsf{(5\sqrt{2})^2=x^2+x^2}

\mathsf{25{\times}2=2x^2}

\mathsf{25=x^2}

\mathsf{x=\sqrt{25}=5}

\therefore\textsf{Height of the triangle}

\mathsf{=AB}

\mathsf{=x}

\mathsf{=5\,cm}

\textbf{Answer:}

\textsf{Height of the triangle is 5 cm}

\textbf{Find more:}

Attachments:
Similar questions