Math, asked by vaishnavi444438, 10 months ago

from her elevated observation post 300m away, a naturalist spots a troop of baboons high up in a tree. Using the small transit attached to her telescope, she finds the angle of depression to the bottom of this tree is 30°, while the angle of elevation to the top of the is 60°. The angle of elevation to the troop of baboons is 45°. Use this information to find the height of the observation post, the height of baboons tree and the height of the baboons above the ground.​

Answers

Answered by abhishekkarkera1994
61

Answer:

Step-by-step explanation:

Attachments:
Answered by stefangonzalez246
12

( a ) Height of the observation post = 100\sqrt{3} meter.

( b ) Height of baboons tree = 400 \sqrt{3} meter.

( c ) Height of baboons above the ground = 100 (\sqrt{3} + 1) meter.

Given

To find the,

( a ) Height of the observation post

( b ) Height of baboons tree

( c ) Height of baboons above the ground.

From the figure,

                         CD = AB = h meters

                         FE = h_1 meter

                         DE = h_2 meter

                          AD = BC = 300 meter.

( a ) Finding height of the observation post :

                             tan 30° = h / 300

                                  \frac{1}{\sqrt{3} } = h / 300

                                   h = 300 / \sqrt{3}

                                      = (100×3) / \sqrt{3}

                                    h = 100\sqrt{3} meter.

( b ) Finding height of baboons tree :

               In ΔADF,        

                               tan 60° = h_1 / 300    

                                      \sqrt{3} = h_1 / 300  

                                        h_1 = 300 \sqrt{3}                

      Height of baboons tree = h + h_1

                                              =  100\sqrt{3} +  300 \sqrt{3}

                                              = 400 \sqrt{3} meter.

( c ) Finding height of baboons above the ground :

              In ΔAED,

                              tan 45° =  h_2 / 300

                                      1 =  h_2 / 300

                                     h_2 = 300

       Height of baboons above the ground = h + h_2

                                                                       = 100\sqrt{3} + 300      

                                                                       = 100 (\sqrt{3} + 1) meter.

To learn more...

brainly.in/question/7842105      

Attachments:
Similar questions