Math, asked by ranibakal25, 7 months ago

from quadratic equation whose roots are 3/4and -2/3​

Answers

Answered by prince5132
7

GIVEN :-

  • roots of quadratic equation are 3/4 and -2/3.

TO FIND :-

  • The quadratic equation by the given roots

SOLUTION :-

As we know that the quadratic equation is given by,

 \\ :  \implies \displaystyle \sf \:x^{2}  - ( \alpha  +  \beta )x + ( \alpha  \beta )  = 0\\  \\

  • α = 3/4.
  • β = -2/3

Now, by substituting the values we get,

 \\ :  \implies \displaystyle \sf \:x^{2}  - \bigg( \frac{3}{4}   -  \frac{2}{3}  \bigg)x +  \bigg( \frac{3}{4}  \times   \frac{ - 2}{3} \bigg)= 0  \\  \\  \\

:  \implies \displaystyle \sf \:x^{2}  - \bigg( \frac{9 - 8}{12}  \bigg)x +  \bigg( \frac{ - 2}{4}  \bigg) = 0 \\  \\  \\

:  \implies \displaystyle \sf \:x^{2}  - \frac{1}{12} x +  \bigg( \frac{ - 1}{2}  \bigg) = 0 \\  \\  \\

:  \implies \underline{ \boxed{ \displaystyle \sf \bold{ \:x^{2}  - \frac{1}{12} x -  \frac{1}{2}  = 0}}} \\  \\

Hence the required quadratic equation is  \displaystyle \sf x^{2}  - \frac{1}{12} x -  \frac{1}{2}  = 0

Answered by Anonymous
3

Data :

= α =  \frac{3}{4}

= β =  \frac{-2}{3}

=  x^2 - ( α + β ) x + ( αβ ) = 0

Using Values :

=  x^2 - [ ( \frac{3}{4}) + ( \frac{-2}{3}) ] x +  [ ( \frac{3}{4}) × ( \frac{-2}{3}) ] = 0

 x^2 - ( \frac{9 - 8}{12}) x + ( \frac{-2}{4}) = 0

 x^2 - ( \frac{1}{12}) x + ( \frac{-1}{2}) = 0

 x^2 - ( \frac{1}{12}) x - ( \frac{1}{2}) = 0

{ ( + ) × ( - ) = ( - ) }

Similar questions