From the adjacent figure 1) prove that sin 2a + cos² a = sin² theta+ cos² theta.
2) prove that sec²a - tan² a = sec²theta - tan² theta
Answers
EXPLANATION.
Prove that.
(1) sin²α + cos²α = sin²θ + cos²θ.
(2) sec²α - tan²α = sec²θ - tan²θ.
As we know that,
Concept of Pythagoras Theorem.
(Hypotenuse)² = (Perpendicular)² + (Base)².
⇒ H² = P² + B².
Hypotenuse > Perpendicular > Base.
Using this concept in the equation, we get.
It is given that,
For θ angles.
Hypotenuse = 13 cm.
Base = 5 cm.
⇒ H² = P² + B².
⇒ (13)² = (P)² + (5)².
⇒ 169 = P² + 25.
⇒ 169 - 25 = P².
⇒ 144 = P².
⇒ P = √144.
⇒ P = 12 cm.
We can write as,
⇒ sinθ = p/h = 12/13.
⇒ cosθ = b/h = 5/13.
⇒ tanθ = 12/5.
For α angles.
Hypotenuse = 13 cm.
Perpendicular = 5 cm.
⇒ H² = P² + B².
⇒ (13)² = (5)² + B².
⇒ 169 - 25 = B².
⇒ 144 = B².
⇒ B = √144.
⇒ B = 12 cm.
We can write as,
⇒ sinα = p/h = 5/13.
⇒ cosα = b/h = 12/13.
⇒ tanα = p/b = 5/12.
Prove that.
(1) sin²α + cos²α = sin²θ + cos²θ.
Put the values in the equation, we get.
⇒ (5/13)² + (12/13)² = (12/13)² + (5/13)².
⇒ (25/169) + (144/169) = (144/169) + (25/169).
⇒ (169/169) = (169/169).
⇒ 1 = 1.
(2) sec²α - tan²α = sec²θ - tan²θ.
⇒ (13/12)² - (5/12)² = (13/5)² - (12/5)².
⇒ (169/144) - (25/144) = (169/25) - (144/25).
⇒ (144/144) = (25/25).
⇒ 1 = 1.
Hence Proved.
EXPLANATION.
Prove that.
(1) sin³a + cos²a = sin²e + cos²0.
(2) sec²a-tan'a = sec²0-tan²0.
As we know that.
Concept of Pythagoras Theorem.
(Hypotenuse) (Perpendicular)² +
(Base).
- H²= P² + B².
Hypotenuse > Perpendicular > Base.
Using this concept in the equation, we
get.
It is given that.
For 8 angles.
Hypotenuse = 13 cm.
Base = 5 cm.
H² = P² + B²
(13)² = (P)² + (5)².
→ 169 = P² + 25.
169-25=p².
- 144 - p²
P= √144.
→ P = 12 cm.
We can write as,
→ sine=p/h = 12/13
cose = b/h = 5/13.
- tane = 12/5.
For a angles.
Hypotenuse = 13 cm.
Perpendicular = 5 cm.
→ H² = P² + B².
(13)² = (5)² + B².
-169-25-B².
- 144=B².
-B=√144.
B = 12 cm.
We can write as,
→ sina = p/h = 5/13.
→ cosa = b/h = 12/13.
→ tana = p/b = 5/12.
Prove that.
(1) sin²a + cos²a = sin²0 + cos²0.
Put the values in the equation, we get.
→ (5/13)² + (12/13)² = (12/13)² + (5/13)².
(25/169) + (144/169) = (144/169) +
(25/169).
(169/169) = (169/169).
⇒ 1 = 1.
(2) sec²a - tan²a = sec²0 - tan²0.
(13/12)²-(5/12)² = (13/5)² - (12/5)².
(169/144) - (25/144) = (169/25) - (144/25).
(144/144) = (25/25).
→ 1=1.
Hence Proved.