Math, asked by jyothimurthy831, 5 months ago

from the adjacent figure
i)prove that sin²alpha+cos²alpha=sin²theta+cos²theta
ii) prove that sec²alpha-tan²alpha=sec²theta-tan²theta​

Attachments:

Answers

Answered by suhail2070
1

Step-by-step explanation:

pr =  \sqrt{ {13}^{2}  -  {5}^{2} }    \\ \sin(theta)  = 12 \: cm \\  \sin(theta)  =  \frac{12}{13}  \\  \\  \cos(theta)  =  \frac{5}{13}  \\  \\  \sin( \alpha )  =  \frac{5}{13}  \\  \cos( \alpha )  =  \frac{12}{13}  \\  \\ therefore \:  \:  \:  \:  { (\sin(theta)) }^{2}  +  {( \cos(theta)) }^{2}  =  \frac{ {12}^{2} }{ {13}^{2} }  +  \frac{ {5}^{2} }{ {13}^{2} }  =   \frac{ {12}^{2}  +  {5}^{2} }{ {13}^{2} }  \\  =  \frac{144 + 25}{169}  =  \frac{169}{169}  = 1 \\  \\  { (\sin( \alpha )) }^{2}  +  { (\cos( \alpha )) }^{2}  =  \frac{ {5}^{2} }{ {13}^{2} }  +  \frac{ {12}^{2} }{13}  =  \frac{25 + 144}{169}  =  \frac{169}{169}  = 1 \\  \\ therefore \:  \:  \:  \:  {( \sin(theta)) }^{2}  +  {( \cos(theta)) }^{2}  =  {( \sin( \alpha )) }^{2}  +  {( \cos( \alpha )) }^{2}  \\  \\  \\  \\  \\  \tan(theta)  =  \frac{12}{5}  \\  \\  \sec(theta)  =  \frac{13}{5}  \\  \\  \tan( \alpha )  =  \frac{5}{12}  \\  \sec( \alpha )  =  \frac{13}{12}  \\  \\ so \:  \:   \:  \:  \:  \:  \:  \: { \sec(theta) }^{2}  -  { \tan(theta) }^{2}  =   \frac{ {13}^{2} }{ {5}^{2} }  -  \frac{ {12}^{2} }{ {5}^{2} }  =  \frac{ {169 - 144} }{25}  \\  =  \frac{25}{25}  = 1 \\  \\  \\  \\  {( \sec( \alpha )) }^{2}  -  {( \tan( \alpha )) }^{2}  =  \frac{ {13}^{2} }{ {12}^{2} }  -  \frac{ {5}^{2} }{ {12}^{2} } =  \frac{169 - 25}{144}   =  \frac{144}{144}  = 1 \\  \\  \\  \\ therefore \:  \:  \:  \:  { (\sec(theta)) }^{2}  -  {( \tan(theta) )}^{2}  =  {( \sec( \alpha ) )}^{2}  -  {( \tan( \alpha )) }^{2}

Similar questions