from the adjoining figure, find (1) sin x , (2) cos y
Answers
Solution:
To calculate sin(x) and cos(y), we have to calculate the sides BD and AD.
In ∆BCD, we have:
→ BD = ?
→ BC = 4 unit.
→ CD = 3 unit.
Applying Pythagoras Theorem On ∆BCD:
→ BD² = BC² + CD²
→ BD² = 4² + 3²
→ BD² = 16 + 9
→ BD² = 25
→ BD = √25
→ BD = 5 unit. ★
In ∆ABD, we have:
→ AB = 12 unit.
→ BD = 5 unit.
→ AD = ??
Applying Pythagoras Theorem on ∆ABD:
→ AD² = AB² + BD²
→ AD² = 12² + 5²
→ AD² = 144 + 25
→ AD² = 169
→ AD = √169
→ AD = 13 unit. ★
Now, lets calculate the values of sin(x) and cos(y)
We have:
→ sin(x) = Perpendicular / Hypotenuse
With respect to angle x:
→ Perpendicular = BC
→ Hypotenuse = BD
Therefore:
→ sin(x) = BC / BD
→ sin(x) = 4 / 5 ★
We have:
→ cos(y) = Base / Hypotenuse
With respect to angle y:
→ Base = AB
→ Hypotenuse = AD
Therefore:
→ cos(y) = 12 / 13 ★
Answer:
- sin(x) = 4/5
- cos(y) = 12/13