From the adjoining figure, find
(i) the area of AABC
(ii) length of BC
(iii) the length of altitude from A to BC.
Answers
i) 6cm²
ii) 5cm
iii) 1.65 cm
● i) Area of ️△ABC
BASE = AB = 3cm
HEIGHT = AC = 4cm
▪︎Area of ️ABC = 1/2 × 3 × 4 = 6 cm²
● ii) We can apply Pythagoras theorem in △ABC and get
BC² = AC² + AB²
BC² = 4² + 3²
BC² = 16 + 9
BC² =
BC = 5cm
● iii) We can apply Pythagoras theorem in △ABD we get
AB² = AD² + BD²
AD² = AB² - BD²
AD² = 3²- BD²
AD² = 9 - BD²....eq(1)
▪︎By applying Pythagoras theorem in ️△ACD we get
AC² = AD² + CD²
AD² = AC² - CD²
AD² = AC² - (BC - BD)²...............(BC = BD + CD)
AD² = AC² - (BC² + BD² - 2 BC × BD)
AD² = AC² - BC² - BD² + 2 BC × BD
AD² = 3² - 5² - BD² + 2 × 5 × BD
AD² = 9 - 25 - BD² + 10BD
AD² = -16 - BD² + 10BD
▪︎substituting eq(1) in eq (2)
9 - BD² = - 16 - BD² + 10BD
9 = -16 + 10BD
10BD = 16 + 9
10BD = 25
BD = 2.5cm
▪︎substituting value of BD in eq(1) , we get
AD² = 9 - BD²
AD² = 9 - 2.5²
AD² = 9 - 6.25
AD² = 2.75
▪︎Therefore,
AD = 1.65cm