Math, asked by dj723715, 1 month ago

From the choices given below choose the equation whose graphs are given in Fig. 4.7

1) y=x+2
2) y=x-2
3) y=-x+2
4) x+2y=6​

Attachments:

Answers

Answered by MysticSohamS
0

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

,

Method \:  I =  \\ so \: here \: for \: certain \: line \\ let  \: \: ( - 1,3) = (x1,y1) \\ (2,0) = (x2,y2) \\  \\ so \: slope \: of \: this \: line  \: (m)=   \frac{y2 - y1}{x2 - x1}  \\  \\  =  \frac{0 - 3}{2 - ( - 1)}  \\  \\  =  \frac{ - 3}{2 + 1}  \\  \\  =  \frac{ - 3}{3}  \\  \\  =  - 1 \\ ie \:  \: m =  - 1 \\  \\ so \: we \: know \: that \\ equation \: of \: slope \: point \: form \: is \: given \: by \\ (y - y1) = m.(x - x1) \\ (y - 3) =  - 1(x - ( - 1)) \\ y - 3 =  - 1(x + 1) \\ y - 3 =  - x - 1 \\ y =  - x - 1 + 3 \\  \\ ie \:  \: y =  - x + 2

Method \:  II =  \\ so \: here \: x - intercept \: a \: is \: 2 \: and \: also \: y \: intercept \: b \: is \: 2 \\ so \: let \: (a,b) = (2,2) \\ so \: we \: know \:  \: that \: equation \: of \: double \: intercept \: form \: \: is \: given \: by \\  \frac{x}{a}  +  \frac{y}{b}  = 1 \\  \\  \frac{x}{2}  +  \frac{y}{2}  = 1 \\  \\  \frac{2x + 2y}{4}  = 1 \\  \\ 2x + 2y = 4 \\ dividing \: throughout \: by \: 2 \\ we \: get \\ x + y = 2 \\ ie \:  \: y = 2 - x \\ hence \:  \: y =  - x + 2

Method \:  III \\ use \: slope \: intercept \: form \: equation \: ie \\ y = mx + c \:  \: wherein \: c  \: \: is \:  \: intercept

Method  \: IV  =  \\ use \: two \: points \: form \: equation \: ie \\  \frac{x - x1}{x1 - x2}  =  \frac{y - y1}{y1 - y2}

Similar questions