Economy, asked by Cuteshivai5429, 1 year ago

From the data given below find out mean
x f
20-40 2
40-60 7
60-80 9
80-100 24
100-120 9
120-140 7
140-160 2

Answers

Answered by hukam0685
4

Answer:

Mean 90

Step by step Explanation:

\begin{tabular}{|l|l|l|l|}</p><p>\cline{1-4}</p><p>Class interval(x) &amp; Frequency(f) &amp; Class mark(xi) &amp; x_if_i \\ \cline{1-4}</p><p>20-40             &amp; 2            &amp; 30             &amp; 60   \\ \cline{1-4}</p><p>40-60             &amp; 7            &amp; 50             &amp; 350  \\ \cline{1-4}</p><p>60-80             &amp; 9            &amp; 70             &amp; 630  \\ \cline{1-4}</p><p>80-100            &amp; 24           &amp; 90             &amp; 2160 \\ \cline{1-4}</p><p>100-120           &amp; 9            &amp; 110            &amp; 990  \\ \cline{1-4}</p><p>120-140           &amp; 7            &amp; 130            &amp; 910  \\ \cline{1-4}</p><p>140-160           &amp; 2            &amp; 150            &amp; 300  \\ \cline{1-4}</p><p>Total             &amp; 60           &amp;                &amp; 5400 \\ \cline{1-4}</p><p>\end{tabular}

Direct Mean Method:

Mean = \frac{sum \:of\: all \:observation}{Total \:observation}\\\\ \bar x=\frac{\Sigma x_i f_i}{\Sigma f_i}\\\\\\\bar x=\frac{5400}{60}\\\\\bar x= 90\\\\

Hope it helps you.

Similar questions