Math, asked by dineshdinesh28456, 10 months ago

from the figure find the value of PQ​

Attachments:

Answers

Answered by luckypriya077
1

Step-by-step explanation:

hope it helps...

mark me as brainliest...

Attachments:
Answered by Anonymous
28

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{Given}}}}

  • QB = d
  • AB = h

\Large{\underline{\mathfrak{\bf{Find}}}}

  • PQ = ?

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

We know,

\small\boxed{\sf{\pink{\:\tan \theta\:=\:\dfrac{Perpendicular}{Base}}}}

\Large{\underline{\mathfrak{\bf{In\:\triangle\:AQB}}}}

\small{\boxed{\sf{\pink{\:\tan 60^{\circ}\:=\:\dfrac{AB}{QB}\:=\:\dfrac{h}{d}}}}} \\ \\ \small\sf{\green{\:\:\:\:\:\left(\tan 60^{\circ}\:=\:\sqrt{3}\right)}} \\ \\ \mapsto\sf{\:\sqrt{3}\:=\:\dfrac{h}{d}} \\ \\ \mapsto\sf{\pink{\:h\:=\:d\sqrt{3}....(1)}}

Again,

\Large{\underline{\mathfrak{\bf{In\:\triangle\:APB}}}}

\small{\boxed{\sf{\pink{\:\tan 30^{\circ}\:=\:\dfrac{AB}{PB}\:=\:\dfrac{h}{PQ+d}}}}} \\ \\ \small\sf{\green{\:\:\:\:\:\left(\tan 30^{\circ}\:=\:\dfrac{1}{\sqrt{3}}\right)}} \\ \\ \mapsto\sf{\:(PQ+d)\:=\:h\sqrt{3}}

keep value by equ(1) ,

\mapsto\sf{\:(PQ+d)\:=\:\sqrt{3}\times d\sqrt{3}} \\ \\ \mapsto\sf{\:PQ\:=\:3d\:-\:d} \\ \\ \mapsto\boxed{\sf{\orange{\:PQ\:=\:2d\:\:\:\:\:\:Ans.}}}

\Large{\underline{\mathfrak{\bf{Thus:-}}}}

  • Value of PQ = 2d.
Attachments:
Similar questions