Math, asked by kenearchanu, 1 month ago

from the figure given, find the value of (1) tanx (2) cos y . (3) sin y.
maths ​

Attachments:

Answers

Answered by ZERO09
1

Answer:

In triangle ADC:

By Pythagoras Theorem:

AD^2= (13)^2-(5)^2

AD^2=169-25

AD^2=144

AD= 12

We know that ,

Tan(x)=DC/AD

(Perpendicular/base)

Tan(x) =5/12

BD=BC-DC

BD=21-5=16

In traingle ABD,

By Pythagoras theorem

AB^2=(16)^2+(12)^2

AB^2= 256+144

AB^2=400

AB= 20

We know that,

cos(y)= base/hypotenuse=16/20=4/5

sin(y)= Perpendicular/hypotenuse= 12/20=3/5

Answered by WildCat7083
4

 \sf \: In \:  ∆ABC  \\ \sf \: By \:  Pythagoras \:  theorem \\ \sf \:  (AC) {}^{2}   = (CD) {}^{2}  + (AD) {}^{2}  \\  \sf \:  {13}^{2}  =  {5}^{2}  + (AD) {}^{2}  \\  \sf \:169 = 25 + (AD) {}^{2}  \\  \sf \:169 - 25 = (AD) {}^{2}  \\  \sf \: \sqrt{144}  = (AD) \\  \sf \:12 = AD \\  \\  \sf \: as \: we \: know \\  \sf{ \red{  \tan(0)  =\frac{opposite}{adjacent}}} \\  \tan(x)  =  \frac{5}{12}  \\  \\  \sf \: In ∆ABD  \\  \sf \: BD=BC-CD  \\  \sf \: BD=21-5=16 \\  \\  \sf \: By  \: Pythagoras \:  theorem \\  \sf \: AB {}^{2} =AD  {}^{2}  + BD {}^{2}  \\  \sf \: AB {}^{2} = {12}^{2}  +  {16}^{2}  \\  \sf \: AB {}^{2} = 144 + 256\\  \sf \: AB=  \sqrt{400}  \\  \sf \: = 20\\ \\  \\   \sf \: as \: we \: know \: that \\  \sf{ \orange{ \cos(0)  =  \frac{adjacent}{hypotenuse}}} \\  \sf \: \cos(y)  =  \frac{16}{20}  \\  \\ \\  \sf { \red{ \sin(0)  =  \frac{opposite}{hypotenuse}}} \\  \sf \: \sin(y)  =  \frac{12}{20}  \\ \\ \sf \: @WildCat7083

Attachments:
Similar questions