Math, asked by anganabanerjee999, 9 months ago

From the first principal find the derivative of 1/ sinx

Useless answers will be reported​

Answers

Answered by prasuna2147
18

hope it helps .................

Attachments:
Answered by BrainlyTornado
38

ANSWER:

  • d/dx( cosec x) = - Cot x cosec x

GIVEN:

  • 1 / sinx

TO FIND:

  • Derivative of 1 / sinx using first principle.

FORMULAE:

 \displaystyle \frac{df(x)}{dx}  =  \lim _{h\to0} \frac{f(x + h) - f(x)}{h}

EXPLANATION:

{ \displaystyle \dfrac{d \left (\dfrac{1}{sin \  x} \right )}{dx}  =  \lim _{h\to0} \frac{ \dfrac{1}{sin(x + h)  }-  \dfrac{1}{sin x} }{h} }

{ \displaystyle \dfrac{d \left (cosec \ x  \right )}{dx}  =  \lim _{h\to0} \frac{ \dfrac{sin x - sin(x + h)}{sin \ x \ sin(x + h)} }{h}}

{ \displaystyle \dfrac{d \left (cosec \ x  \right )}{dx}  =  \lim _{h\to0} \dfrac{sin x - sin(x + h)}{h(sin \ x \ sin(x + h))} }

Sin A - Sin B = 2Cos[(A + B)/2] × Sin[(A - B)/2]

{sin x - sin(x + h) = 2cos( \frac{x + x  + h}{2} )sin( \frac{x - x - h}{2} })

{sin x - sin(x + h) =2cos( \frac{ 2x  + h}{2} )sin( \frac{- h}{2} })

Sin (- x) = - Sin x

{sin x - sin(x + h) =  -2cos( \frac{ 2x  + h}{2} )sin( \frac{h}{2} })

 =  \lim _{h\to0}  \dfrac{ - cos(x +  \frac{ h}{2} )sin( \frac{h}{2} )}{ \dfrac{h}{2} (sin \ x \ sin(x + h))}

 \bold{\bigstar{\gray{\frac{ \large{sin} \left( \dfrac{h}{2} \right) }{ \dfrac{h}{2} }  = 1}}}

 =  \lim _{h\to0} \dfrac{ - cos(x +  \frac{ h}{2} )}{ (sin \ x \ sin(x + h))}

 =  -  \dfrac{cos(x +  \frac{ 0}{2} )}{ sin \ x \ sin(x + 0)}

 =   - \dfrac{cos \ x}{ sin \ x \ sin \ x}

cos x / sin x = cot x

1 / sin x = cosec x

 =   - cosec \ x \ cot \ x

\dfrac{d \left (\dfrac{1}{sin \  x} \right )}{dx}  =  - cosec \ x \ cot \ x

Similar questions