Math, asked by khushi1308, 11 months ago

From the following figure, find the values of
(1) sin B
(2) tan c
(3) sec^2 B - tan^2 B (iv) sin^2 C + cos^2 C​

Attachments:

Answers

Answered by saiharshithparitala
1

Answer:

1.sinb=12/13

2.12/16 or3/4

3.1

4.1

Answered by fab13
4

Answer:

here,

in triangle ABD,

AB=13

BD=5

By pythagoras theorem,

ad =  \sqrt{ab {}^{2}  -  {bd}^{2}  }  =  \sqrt{ {13}^{2} -  {5}^{2}  }  =  \sqrt{169 - 25}  =  \sqrt{144}  = 12

In triangle ADC,

AD=12

CD=16

By pythagoras theorem

ac =  \sqrt{ {ad}^{2}  +  {cd}^{2} }  =  \sqrt{12 {}^{2} +  {16}^{2}  }  =  \sqrt{144 + 256}  =  \sqrt{400}  = 20

☆1☆

 \sin(b)  =  \frac{ad}{ab}  =  \frac{12}{13}

☆2☆

 \tan(c)  =  \frac{ad}{cd}  =  \frac{12}{16}  =  \frac{3}{4}

☆3☆

 { \sec }^{2} b -  { \tan }^{2} b \\  =  (\frac{ab}{bd} ) ^{2}  - ( \frac{ad}{bd} ) {}^{2}  \\  =  (\frac{13}{5} ) {}^{2}  - ( \frac{12}{5} ) ^{2}  \\  =  \frac{169}{25}  -  \frac{144}{25}  \\  =  \frac{169 - 144}{25}  \\  =  \frac{25}{25}  \\  = 1

☆4☆

 \sin^{2} c  +   \cos^{2} c \\   = ( \frac{12}{20} ) {}^{2}  +  (\frac{16}{20} ) {}^{2}  \\  =  \frac{144}{400}  +  \frac{256}{400}  \\  =   \frac{144 + 256}{400}   \\ =  \frac{400}{400} \\   = 1

Similar questions