Math, asked by jeet6963, 9 months ago

From the following figure,
find the values of:
(i) sin A (ii) sec A
(iii) cos² A + sin² A

Attachments:

Answers

Answered by SarcasticL0ve
9

GivEn:

  • AB = BC = a

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Value of -

  1. sin A
  2. sec A
  3. cos² A + sin² A

⠀⠀⠀⠀⠀⠀⠀

SoluTion:

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Using\; Pythagoras\; theorem\;:}}}

⠀⠀⠀⠀⠀⠀⠀

\;\;\star\;\sf H^2 = B^2 + P^2

⠀⠀⠀⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf AC^2 = a^2 + a^2

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf AC^2 = 2a^2

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf AC^2 = 2a^2

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\sf \underline{Taking\;sqrt\;both\;sides\;:}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{AC^2} = \sqrt{2a^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\bf \red{AC = \sqrt{2}a}

━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀

\bf We\;have \begin{cases}</p><p> &amp; \text{Base (B) = a}  \\</p><p> &amp; \text{Perpendicular (P) = a}  \\ &amp; \text{Hypotenuse (H) = $\sqrt{2}a$}\end{cases}

⠀⠀⠀⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀⠀⠀⠀

1) \sf \sin \;A = \dfrac{P}{H}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{ \cancel{a}}{ \sqrt{2} \cancel{a}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \pink{ \dfrac{1}{ \sqrt{2}}}\;\bigstar

━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀

2) \sf \sec \;A = \dfrac{H}{B}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{ \sqrt{2} \cancel{a}}{ \cancel{a}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \purple{ \sqrt{2}}\;\bigstar

━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀

3) \sf cos^2\;A + sin^2 A = \bigg( \dfrac{B}{H} \bigg)^2 + \bigg( \dfrac{P}{H} \bigg)^2

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \bigg( \dfrac{a}{ \sqrt{2}a} \bigg)^2 + \bigg( \dfrac{a}{ \sqrt{2}a} \bigg)^2

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \bigg( \dfrac{ \cancel{a}}{ \sqrt{2} \cancel{a}} \bigg)^2 +\bigg( \dfrac{ \cancel{a}}{ \sqrt{2} \cancel{a}} \bigg)^2

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \bigg( \dfrac{1}{ \sqrt{2}} \bigg)^2 +\bigg( \dfrac{1}{ \sqrt{2}} \bigg)^2

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{1}{2} + \dfrac{1}{2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{1 + 1}{2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \cancel{ \dfrac{2}{2}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \green{1}\;\bigstar\;\;\;\;\;\;\;\;\;\;\;\;\bigg\lgroup\bf sin^2\;A + cos^2\;A = 1 \bigg\rgroup

━━━━━━━━━━━━━━━

\boxed{</p><p>\begin{minipage}{7 cm}</p><p>Fundamental Trigonometric Identities \\ \\</p><p>$\sin^2\theta + \cos^2\theta=1 \\ \\</p><p>1+\tan^2\theta = \sec^2\theta \\ \\</p><p>1+\cot^2\theta = \text{cosec}^2 \, \theta$</p><p>\end{minipage}</p><p>}

Similar questions