Physics, asked by ishita1534, 11 months ago


From the given data set determine the angular dispersion by the prism and dispersive power of its material fo
extreme colors ng = 1.62, n = 1.66, 8g = 3.1°.

Answers

Answered by sonuvuce
61

Answer:

The angular dispersion is 0.2^\circ

The dispersive power of the prism is 0.0625

Explanation:

Angle of deviation for red colour

\delta_R=3.1^\circ

Given, the refractive index dor red colour

\mu_R=1.62

We know that

\delta_R=(\mu_R-1)A

3.1^\circ=(1.62-1)A

\implies A=\frac{3.1^\circ}{0.62}

\implies A=5^\circ

Therefore, the angle of prism is 5^\circ

The angle of deviation for the violet colour

\delta_V=(\mu_V-1)A

\implies \delta_V=(1.66-1)\times 5^\circ

\implies \delta_V=3.3^\circ

The angle of deviation for the yellod colour (mean angle of deviation)

\delta_Y=\frac{\delta_R+\delta_V}{2}

\implies \delta_Y=\frac{3.1^\circ+3.3^\circ}{2}

\implies \delta_Y=3.2^\circ

The angular dispersion by the prism

\theta=\delta_V-\delta_R

\theta=3.3^\circ-3.1^\circ

\theta=0.2^\circ

The dispersive power of the prism

\omega=\frac{\theta}{\delta_Y}

\implies \omega=\frac{0.2}{3.2}

\implies \omega=0.0625

Hope this helps.

Answered by RowdyGirl007
3

Answer:

The angular dispersion is 0.2^\circ0.2

The dispersive power of the prism is 0.06250.0625

Explanation:

Angle of deviation for red colour

\delta_R=3.1^\circδ

R

=3.1

Given, the refractive index dor red colour

\mu_R=1.62μ

R

=1.62

We know that

\delta_R=(\mu_R-1)Aδ

R

=(μ

R

−1)A

3.1^\circ=(1.62-1)A3.1

=(1.62−1)A

\implies A=\frac{3.1^\circ}{0.62}⟹A=

0.62

3.1

\implies A=5^\circ⟹A=5

Therefore, the angle of prism is 5^\circ5

The angle of deviation for the violet colour

\delta_V=(\mu_V-1)Aδ

V

=(μ

V

−1)A

\implies \delta_V=(1.66-1)\times 5^\circ⟹δ

V

=(1.66−1)×5

\implies \delta_V=3.3^\circ⟹δ

V

=3.3

The angle of deviation for the yellod colour (mean angle of deviation)

\delta_Y=\frac{\delta_R+\delta_V}{2}δ

Y

=

2

δ

R

V

\implies \delta_Y=\frac{3.1^\circ+3.3^\circ}{2}⟹δ

Y

=

2

3.1

+3.3

\implies \delta_Y=3.2^\circ⟹δ

Y

=3.2

The angular dispersion by the prism

\theta=\delta_V-\delta_Rθ=δ

V

−δ

R

\theta=3.3^\circ-3.1^\circθ=3.3

−3.1

\theta=0.2^\circθ=0.2

The dispersive power of the prism

\omega=\frac{\theta}{\delta_Y}ω=

δ

Y

θ

\implies \omega=\frac{0.2}{3.2}⟹ω=

3.2

0.2

\implies \omega=0.0625⟹ω=0.0625

Hope this helps.

Similar questions