From the given figure, evaluate :
(1) sin2 B + cos2 B (1) cos B
(in) tan C
(iv) sin B cos C + cos B sin C
Answers
Given :-
- In Right angle ∆ ABC , ∠A = 90°
- In which AB = 8. BC = 17 , AC = ?
To Find :-
- (i) Sin²B + Cos²B = ?
- (ii) CosB = ? (iii) TanC = ?
- (iv) SinB × CosC + CosB × SinC = ?
Solution :-
To evaluate the above expression , at first we have to find the the length of AC. By applying Pythagoras theorem Then evaluate the above expression. from given question , we have to assume AB is perpendicular , BC is hypotenuse and
AC is base of the given triangle.
As per Pythagoras theorem :-
⇒ BC² = AB² + AC²
⇒ 17² = 8² + AC²
⇒ 289 = 64 + AC²
⇒ AC² = 289 - 64
⇒ AC = √225
⇒ AC = 15
Now evaluate the expression here :-
⇒ Sin²B + Cos²B
⇒ (AC/BC)² + (AB/BC)²
⇒ (15/17)² + (8/17)²
⇒ 225/289 + 64/289
⇒ (225 + 64)/289
⇒ 289/289 = 1
⇒ CosB = (AB/BC)
⇒ CosB = 8/17
⇒ TanC = (AB/AC)
⇒ TanC = 8/15
⇒ SinB × CosC + CosB × SinC
⇒ (AC/BC) × (AC/BC) + (AB/BC) × (AB/BC)
⇒ 15/17 × 15/17 + 8/17 × 8/17
⇒ 225/289 + 64/289
⇒ (225 + 64)/289
⇒ 289/289 = 1
Some note related to this question :-
- As per theta C :-
⇒ Theta C = adjacent side is AC
⇒ Theta C = opposite side is AB
- As per theta B :-
⇒ Theta B = adjacent side is AB
⇒ Theta B = opposite side is AC
- As per theta A :-
⇒ Theta A = adjacent side is AB or AC
⇒ Theta A = opposite side is AB or AC
Given :-
A triangle ABC
Distance of AB = 8
Distance of BC = 17
To Find :-
(i) sin² B + cos² B
(ii)cos B
(iii) tan C
(iv) sin B cos C + cos B + sin C
Solution :-
At first we need to know some formula
By Pythagoras theorem
⇒ (17)² = (8)² + (AC)²
⇒ (17 × 17) = (8 × 8) + (AC)²
⇒ 289 = 64 + AC²
⇒ AC² = 289 - 64
⇒ AC² = 225
⇒ AC = √225
⇒ AC = 15 cm
(i) sin² B + cos²B
sin θ = opp/hyp
sin θ = 15/17
cos θ = adj/hyp
cos θ = 8/17
(15/17)² + (8/17)²
(225/289) + (64/289)
225 + 64/289
289/289
1
(ii) cos B
cos θ = adj/hyp
cos θ = 8/17
(iii) tan C
tan θ = opp/adj
tan θ = 8/15
(iv) sin B cos C + cos B sin C
(15/17) × (15/17) + (8/17) × (8/17)
225/289 + 64/289
289/289
1