From the given figure, evaluate :
(1) sin2 B + cos2 B (1) cos B
(in) tan C
(iv) sin B cos C + cos B sin C
Answers
Hello, Buddy!!
➸ ɢɪᴠᴇɴ:-
- ABC is a Right Angle Triangle, ∠BAC = 90°.
- Length of AB = 8 units.
- Length of BC = 17 units.
➸ ᴛᴏ ꜰɪɴᴅ:-
- sin²B+cos²B
- cosB
- tanC
- sinBcosC+cosBsinC
➸ ʀᴇQᴜɪʀᴇᴅ ꜱᴏʟᴜᴛɪᴏɴ:-
As, it's a Right Angle Triangle
By Pythagoras Theorem
→ (side)²+(side)² = (Hypothenuse)²
→ (AB)²+(AC)² = (BC)²
→ (8)²+(AC)² = (17)²
→ (AC)² = 289-64
→ AC = √(225)
→ AC = √(25)²
→ AC = 15 units.
- Length of AC = 15 units.
→ sin²B+cos²B
→ (AC/BC)²+(AB/BC)²
→ (15/17)²+(8/17)²
→ (225/289)+(64/289)
→ (225+64)/289
→ 289/289
→ 1
- sin²B+cos²B
→ cosB
→ (AB/BC)
→ 8/17
- cosB
→ tanC
→ (AB/AC)
→ 8/15
- tanC
→ sinBcosC+cosBsinC
→ (AC/BC)×(AC/BC)+(AB/BC)×(AB/BC)
→ (15/17)×(15/17)+(8/17)×(8/17)
→ (15/17)²+(8/17)²
→ (225/289)+(64/289)
→ (225+64)/289
→ 289/289
- sinBcosB+cosBsinC
☛ ƒσɾɱµℓαร µรε∂:-
- Sin theta = Opposite/Hypothenuse
- Cos theta = Adjacent/Hypothenuse
- Tan theta = Opposite/Adjacent
Hope This Helps!!
Given :-
A triangle ABC
Distance of AB = 8
Distance of BC = 17
To Find :-
(i) sin² B + cos² B
(ii)cos B
(iii) tan C
(iv) sin B cos C + cos B + sin C
Solution :-
At first we need to know some formula
By Pythagoras theorem
⇒ (17)² = (8)² + (AC)²
⇒ (17 × 17) = (8 × 8) + (AC)²
⇒ 289 = 64 + AC²
⇒ AC² = 289 - 64
⇒ AC² = 225
⇒ AC = √225
⇒ AC = 15 cm
(i) sin² B + cos² B
sin θ = opp/hyp
sin θ = 15/17
cos θ = adj/hyp
cos θ = 8/17
(15/17)² + (8/17)²
(225/289) + (64/289)
225 + 64/289
289/289
1
(ii) cos B
cos θ = adj/hyp
cos θ = 8/17
(iii) tan C
tan θ = opp/adj
tan θ = 8/15
(iv) sin B cos C + cos B sin C
(15/17) × (15/17) + (8/17) × (8/17)
225/289 + 64/289
289/289
1