From the information given below find which of the point is between the other two. If the points are not collinear, state so. d(X, Y) = 15, d(Y, Z) = 7, d(X, Z) = 8
Answers
akshithapadidam avatar
akshithapadidam
14.07.2020
Math
Secondary School
answered
From the information given below, find which of the point is between the other two. Ifthe points are not collinear ,state so. d(R,S)=8 , d(S,T)=6 , d(R,T)=4. Answer this question correctly I will thanks your 3 Answers and I will mark you as brainliest
2
SEE ANSWERS
Unlocked badge showing an astronaut’s boot touching down on the moon
See what the community says and unlock a badge.
Answer
4.0/5
33
harshpatel98105
Ace
205 answers
53.2K people helped
Answer:
For any three-distinct collinear points P, Q and R, the point Q is said to be in between P and R if
d (P, Q) + d (Q, R) = d (P, R).
(i) Given: d (P, R) = 7, d (P, Q) = 10, d (Q, R) = 3
Now, consider d (P, Q) = 10 ……….(I)
And d (P, R) + d (Q, R) = 7 + 3 = 10 ……….(II)
∴ Using (I) and (II), we have
d (P, R) + d (Q, R) = d (P, Q)
⇒ R lies between P and Q.
(ii) Given: d (R, S) = 8, d (S, T) = 6, d (R, T) = 4
Here, d (R, S) + d (S, T) = 8 + 6 = 14 ≠ 4 = d (R, T)
Also, d (R, S) + d (R, T) = 8 + 4 = 12 ≠ 6 = d (S, T)
And d (S, T) + d (R, T) = 6 + 4 = 10 ≠ 8 = d (R, S)
Hence, the points R, S and T are non-collinear.
(iii) Given: d (A, B) = 16, d (C, A) = 9, d (B, C) = 7
Now, consider d (A, B) = 16 ……….(I)
And d (C, A) + d (B, C) = 9 + 7 = 16 ……….(II)
∴ Using (I) and (II), we have
d (C, A) + d (B, C) = d (A, B)
⇒ C lies between A and B.
(iv) Given: d (L, M) = 11, d (M, N) = 12, d (N, L) = 8
Here, d (L, M) + d (M, N) = 11 + 12 = 23 ≠ 8 = d (N, L)
Also, d (L, M) + d (N, L) = 11 + 8 = 19 ≠ 12 = d (M, N)
And d (M, N) + d (N, L) = 12 + 8 = 20 ≠ 11= d (L, M)
Hence, the points L, M and N are non-collinear.
(v) Given: d (X, Y) = 15, d (Y, Z) = 7, d (X, Z) = 8
Now, consider d (X, Y) = 15 ……….(I)
And d (Y, Z) + d (X, Z) = 7 + 8 = 15 ……….(II)
∴ Using (I) and (II), we have
d (Y, Z) + d (X, Z) = d (X, Y)
⇒ Z lies between X and Y.
(vi) Given: d (D, E) = 5, d (E, F) = 8, d (D, F) = 6
Here, d (D, E) + d (E, F) = 5 + 8 = 13 ≠ 6 = d (D, F)
Also, d (D, E) + d (D, F) = 5 + 6 = 11 ≠ 8 = d (E, F)
And d (E, F) + d (D, F) = 8 + 6 = 14 ≠ 5 = d (D, E)
Hence, the points D, E and F are non-collinear.
Check whether the points are collinear
d(X, Y) = 15 d(Y, Z) = 7 d(X, Z) = 8
d(X, Y) is the maximum among the given distances.
d(X, Y) = d(Y, Z) + d(X, Z)
15 = 7 + 8
15 = 15
LHS = RHS