Math, asked by muruga2109dtk, 1 month ago

From the polynomial whose
zeroes are
3+√3 and 3-√3​

Answers

Answered by Evilhalt
474

 \large \sf {\underline {\underline{ \color{purple}{Question :  - }}}}

 \sf{Form \:  the  \: polynomial \:  whose  \: zeroes \:  are  \: 3 +  \sqrt{3}   \: and \:  3 -  \sqrt{3} }

  \large\sf {\underline {\underline{ \color{purple}{ Answer:  - }}}}

 \sf{  :  \implies{x}^{2}  - 6x  + 6} 

  \large\sf {\underline{ \color{red}{Given \:  that :  - }}}

 \sf{The  \: zeroes \:  are \:  3 +  \sqrt{3}  \:  and  \: 3 -  \sqrt{3} . }

 \sf{∴  \: Sum \:  of  \: the \:  zeroes  \: = \:  ( 3 +  \sqrt{3} ) + ( 3 -  \sqrt{3} ) = 6 }

 \circ \:  \: \sf {\underline{ \color{green}{Their \:  Product : }}}

 \sf{ :  \implies \: Product  \: of \:  the \:  zeroes  \: = \:  ( 3 +  \sqrt{3} )  ( 3 -  \sqrt{3} )}

 \sf{ :  \implies \: = 9 -  {( \sqrt{3} )}^{2} }

 \sf{ :  \implies \: \:  =  \: 9 - 3}

 \sf{ :  \implies \:=  { \boxed{ \color{red}6}}}

 \sf{The  \: required \:  polynomial \:  is  : }

 \sf{ {x}^{2}  \:  -  \: (sum \:  of \:  the \:  zeroes)  \: x \:  +  \: Product  \: of \:  the  \: zeroes \:  ⇒  {x}^{2}  - (6)x + 6 }

 { \underline{ \boxed{ \sf{ \pink{   :  \implies \:  ∴   \:  {x}^{2}  - 6x + 6  }}}}}

Answered by Anonymous
34

The zeroes are 3 + √3 and 3 - √3. ∴ Sum of the zeroes = ( 3 + √3) + ( 3 - √3) = 6

∴ Product of the zeroes = ( 3 + √3) ( 3 - √3) = 9 - (√3)2

= 9 - 3 = 6

The required polynomial is

x2 - (sum of the zeroes) x + Product of the zeroes ⇒ x2 - (6)x + 6

∴ x2 - 6x + 6

Similar questions