Math, asked by rakshit9847, 4 months ago

From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45° Determine the height of the tower.​

Answers

Answered by ILLUSTRIOUS27
34

In AED,

Perpendicular (P)=AE

Base (B)=DE

We know,

  \rm  \boxed{tan \theta =  \frac{p}{b} }

Here,

 \rm tan 60 =  \frac{AE}{DE}  \\  \rm  \frac{1}{ \sqrt{3} }  =  \frac{h - 7}{DE}  \\  \rm  \boxed{DE =  \sqrt{3} (h - 7)}....1

In DEB,

Perpendicular (P)=EB

Base (B)=DE

We know,

 \rm \boxed{  tan \theta =  \frac{p}{b} }

Here,

 \rm tan45 =  \frac{EB}{DE}  \\  \rm \: 1 =  \frac{7}{DE}  \\  \rm \implies \boxed{DE = 7}......2

From 1 & 2,we get

  \rm\sqrt{3} (h - 7) = 7 \\  \rm \:  \sqrt{3} h = 7 + 7 \sqrt{3} \\  \rm \:  \implies \boxed{ h =  \frac{7(1 +  \sqrt{3} }{3}}

Therefore height of the tower is 7(1+3)/3

Attachments:
Answered by MaIeficent
60

Step-by-step explanation:

Diagram:- Refer the attachment

Given:-

  • The height of the building = 7m

  • The angle of elevation of a cable tower from the top of the building is 60°

  • The angle of depression of its foot is 45°

To Find:-

  • The height of the tower.

Solution:-

Let AB be the height of the building = 7m

And EC be the height of the building.

From the point A , elevation of tower is 60° and the angle of depression of its foot is 45°.

i.e ∠DAE = 60° and ∠CAD = 45°

And, AB = CD = 7m

\sf \underline{In \: \triangle ABC:-}

\sf \implies tan45^{ \circ}  =  \dfrac{AB}{BC}

\sf \implies 1 =  \dfrac{7}{BC}

\sf \implies BC = 7m

\sf \implies AD = BC = 7m

\sf\underline{ In \: \triangle ADE:-}

\sf \implies tan60^{ \circ}  =  \dfrac{DE}{AD}

\sf \implies \sqrt{3} =  \dfrac{DE}{7}

\sf \implies DE = 7\sqrt{3}

\sf Height \: of \: the\:  tower = DE + CD

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 7\sqrt{3} + 7

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \: = 7(\sqrt{3} + 1)

\underline{\boxed{\bf \therefore \: Height \: the \: tower = 7(\sqrt{3} + 1)m}}

Attachments:
Similar questions