Math, asked by Sathi70, 1 year ago

from the top of a building 100m high the angles of depression of the top and bottom of a tower are observed to be 45° and 60° respectively . find the height of the tower and also the distance between the foot of the building and for of the tower

Answers

Answered by Anonymous
122

Consider a building of height (AC) 100 m and tower (ED) be h.

So, AB = (100 - h) m

The building makes an angles of depression at the top and bottom of a tower; which are observed to be 45° and 60°.

Join B and E such that BE = CD.

Now,

In ∆ACD

\rightarrow\:\sf{\frac{AC}{CD}\:=\:tan60^{\circ}}

\rightarrow\:\sf{\dfrac{100}{CD}\:=\:\sqrt{3}}

\rightarrow\:\sf{100\:=\:CD\sqrt{3}}

\rightarrow\: \sf{\dfrac{100 }{ \sqrt{3} \:  }  \: =  \: CD} ...(1)

\rightarrow\:\sf{\dfrac{100}{1.732}\:=\:CD}

\rightarrow\:\sf{CD\:=\:57.74\:m}

•°• Distance between the foot of the tower and building is 57.74 m.

In ∆ABE

\rightarrow\:\sf{\dfrac{AB}{BE}\:=\:tan45^{\circ}}

\rightarrow\:\sf{\dfrac{AB}{BE}\:=\:1}

\rightarrow\:\sf{AB\:=\:BE}

But BE = CD

\rightarrow\:\sf{AB\:=\:CD}

\rightarrow\:\sf{CD\:=\:100\:-\:h} ...(2)

Substitute value of CD = 100/√3 in equation (2)

\rightarrow\:\sf{\dfrac{100}{\sqrt{3}}\:=\:10\:-\:h}

On rationalizing we get,

\rightarrow\:\sf{\dfrac{100\sqrt{3}}{3}\:=\:100\:-\:h}

\rightarrow\:\sf{h\:=\:100\:-\:\frac{100\sqrt{3}}{3}}

\rightarrow\:\sf{h\:=\:\dfrac{300\:-\:100\sqrt{3}}{3}}

\rightarrow\:\sf{h\:=\:\dfrac{100(3\:-\:\sqrt{3})}{3}}

\rightarrow\:\sf{h\:=\:\dfrac{100(3\:-\:1.732)}{3}}

\rightarrow\:\sf{h\:=\:\dfrac{100(1.268)}{3}}

\rightarrow\:\sf{h\:=\:100(0.4226)}

\rightarrow\:\sf{h\:=\:42.26\:m}

•°• Height of tower is 42.26 m

Attachments:
Answered by RvChaudharY50
146

\Large\underline{\underline{\sf{Given}:}}

  • Angle of depression of The top and bottom of a tower are 45° and 60°
  • Height of Building = 100 m ..

\Large\underline\mathfrak{Question}

  • Height of tower = ?
  • Distance b/w foot of building and tower ?

\Large\underline{\underline{\sf{Solution}:}}

  \red{\textbf{Refer To image First ...}}

From image we can see that ,,

  • AB = Height of Building = 100m
  • DC = Height of tower = h m
  • CB = DE = Foot distance = x m
  • angle ACB = 60° ( As angle of depression = angle of elevation)
  • angle ADE = 45°

___________________________

 \textbf{in right triangele ACB first}

tan60 =  \frac{AB}{CB}  =  \frac{100}{x} \\  \\   \red\leadsto \:  \sqrt{3}  =  \frac{100}{x}  \\  \\ \red\leadsto \: x =  \frac{100}{ \sqrt{3} }  \\  \\ rationalize \\  \\ \red\leadsto \green{\large\boxed{\bold{x = \frac{100 \sqrt{3} }{3} m }}}

 \textbf{ Hence, distance between Foot of Tower} \\ \textbf{and Building is} \:  \frac{100 \sqrt{3} }{3} m

__________________________________

Now, From diagram we can see that ,

CB = DE = 100√3/3m (Solved above)

 \textbf{in traingle AED now}

tan45 =  \frac{AE }{ED } \\  \\  \red \leadsto \: 1 =   \frac{(100 - h)}{ \frac{100 \sqrt{3} }{3} }  \\  \\ \red \leadsto  \frac{100 \sqrt{3} }{3}  = (100 - h) \\  \\ \red \leadsto100 \sqrt{3}  = 300 - 3h \\  \\ \red \leadsto3h = 300 - 100 \sqrt{3}  \\  \\ \red \leadsto \: h =  \frac{300 - 100 \sqrt{3} }{3}  \\  \\ \red \leadsto \: h =  \frac{300 - 100 \times 1.73}{3}  \\  \\ \red \leadsto \: h = \:  \frac{300 - 173}{3}  \\  \\ \red \leadsto \: h = \frac{127}{3} \\  \\  \red \leadsto \: \large\boxed{\bold{h =42.33m }} \\  \\  \pink{\textbf{Hence, Height of tower = DC =42.33m }}

\large\underline\textbf{Hope it Helps You.}

Attachments:
Similar questions