from the top of a hill 200 metre height the angle of dispression of the top & the bottom of pillar are 30° and 60° respectively. Find the pillar's height and its distance from the hill
sushilkumaragr468:
Hii
Answers
Answered by
1
Description for Correct answer:

AB = hill = 200 metre
CD = tower
\( \Large In\triangle APC \)
\( \Large tan30 ^{\circ}=\frac{AP}{PC} \)
\( \Large \frac{1}{\sqrt{3}}=\frac{AP}{PC}\Rightarrow AP:PC=1:\sqrt{3}......(i) \)
\( \Large In\triangle ABD \)
\( \Large tan60 ^{\circ} =\frac{AB}{BD} \)
\( \Large \sqrt{3}=\frac{AB}{BD}=AB:BD=\sqrt{3}:1......(ii) \)
PB = CD and PC = BD
Now

\( \Large CD=PB\Rightarrow AB-AP \)
\( \Large CD=3-1=2\ units \)
\( \Large AB=3\ units=200\ metre \)
\( \Large CD=2\ units=\frac{200}{3} \times 2 \)
\( \Large =133\frac{1}{3}\ metre\)

AB = hill = 200 metre
CD = tower
\( \Large In\triangle APC \)
\( \Large tan30 ^{\circ}=\frac{AP}{PC} \)
\( \Large \frac{1}{\sqrt{3}}=\frac{AP}{PC}\Rightarrow AP:PC=1:\sqrt{3}......(i) \)
\( \Large In\triangle ABD \)
\( \Large tan60 ^{\circ} =\frac{AB}{BD} \)
\( \Large \sqrt{3}=\frac{AB}{BD}=AB:BD=\sqrt{3}:1......(ii) \)
PB = CD and PC = BD
Now

\( \Large CD=PB\Rightarrow AB-AP \)
\( \Large CD=3-1=2\ units \)
\( \Large AB=3\ units=200\ metre \)
\( \Large CD=2\ units=\frac{200}{3} \times 2 \)
\( \Large =133\frac{1}{3}\ metre\)
Similar questions