Math, asked by shausurya07, 10 months ago

From the top of a tower, the angles of depression of two objects on the ground on the same side of it, are observed to be 60° and 30° respectively and the distance between the objects is 400 √ m. The height (in m) of the tower is?

Answers

Answered by Anonymous
6

Step-by-step explanation:

h=200root6

plz mark it as brainliest

Attachments:
Answered by BrainlyConqueror0901
18

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Height\:of\:tower=600\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Angle \: of \: depression( \theta) = 60 \degree \\  \\ \tt:  \implies Angle \: of \: depression( \theta_{o}) = 30 \degree \\  \\  \tt:  \implies Distance \: between \: object  = 400 \sqrt{3}  \: m \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Height \: of \: tower =?

• According to given question :

 \tt \circ \:Let \: height \: of \: tower \: be \: x \\  \\  \bold{In \:  \triangle \: ABC: } \\  \tt:  \implies tan \:  \theta=  \frac{p}{b}  \\  \\ \tt:  \implies tan \:60 \degree =  \frac{AB}{BC} \\  \\  \tt:  \implies  \sqrt{3}  =  \frac{x}{BC}  \\  \\ \tt:  \implies BC =  \frac{x}{ \sqrt{3} }  -  -  -  -  -  (1) \\  \\  \bold{In \:  \triangle \: ABD : } \\ \tt:  \implies tan \: \theta_{o} =  \frac{p}{b}  \\  \\ \tt:  \implies tan \: 30 \degree =  \frac{AB}{BD}  \\  \\ \tt:  \implies  \frac{1}{ \sqrt{3} }  =  \frac{x}{BC + CD}  \\  \\ \tt:  \implies  \frac{1}{ \sqrt{3}} =  \frac{x}{BC+ 400 \sqrt{3} } -  -  -  -  - (2)    \\  \\  \text{Putting \: value \: of \: BC \: in \: (2)} \\ \\  \tt:  \implies  \frac{1}{ \sqrt{3} }  =  \frac{x}{ \frac{x}{ \sqrt{3}}  + 400 \sqrt{3} }  \\  \\ \tt:  \implies  \frac{1}{ \sqrt{3}  } =  \frac{x \sqrt{3} }{x + 1200}  \\  \\ \tt:  \implies  x + 1200 =  3x \\  \\ \tt:  \implies 2x = 1200 \\  \\ \tt:  \implies x =  \frac{1200}{2}  \\  \\  \green{\tt:  \implies x = 600 \: m} \\  \\  \green{ \tt \therefore Height \: of \: tower \: is \: 600 \: m}

Attachments:
Similar questions