Math, asked by dont47, 11 months ago

from the top off a building 60 metre heights the angle of depression of the top and the bottom of a tower are observed at be 30 degree 60 degree respectively find the height of the tower?​

Answers

Answered by Anonymous
11

Given :

  • From the top of a building 60 m height the angle of depression of the top and the bottom of a tower are observed at be 30° and 60° respectively.

To find :

  • Height of the tower.

Solution :

Let the height of the building be AC.

AC = 60 m.

\sf{\angle\:FAE=30^\degree}

\sf{\angle\:FAD=60^\degree}

So,

\sf{\angle\:FAE=\angle\:AEB=30^\degree\:[Alternate\:angles]}

\sf{\angle\:FAD=\angle\:ADC=60^\degree\:[Alternate\:angles]}

ACD is a right triangle.

\sf{\frac{AC}{CD}=tan60^\degree}

 \implies\sf{\frac{60}{DC}=\sqrt{3}}

\implies\sf{DC\sqrt{3}=60}

\implies\sf{DC=20\sqrt{3}}

{\boxed{\green{\bold{DC=20\sqrt{3}\:m}}}}

DC = BE

\sf{BE=20\sqrt{3}\:m}

ABE is a right triangle.

\sf{\frac{AB}{BE}=tan30^\degree}

\implies\sf{\frac{AB}{20\sqrt{3}}=\frac{1}{\sqrt{3}}}

\implies\sf{AB=20}

{\boxed{\purple{\bold{AB=20\:m}}}}

\sf{BC=AC-AB}\\ \\ \implies\sf{BC=60-20}\\ \\ \implies\sf{BC=40}

We know,

BC = ED

{\boxed{\blue{\bold{ED=40\:m}}}}

Hence the height of the tower is 40 m.

Attachments:
Answered by silentlover45
2

\large\underline\mathrm{Given:-}

  • from the top off a building 60 metre heights the angle of depression of the top and the bottom of a tower are observed at be 30 degree 60 degree respectively.

\large\underline\mathrm{To \: find}

  • height of the tower

\large\underline\mathrm{Solution}

Let the height of the building be AC.

AC = 60m

  • FAE = 30°
  • FAD = 60°

\large\underline\mathrm{so,}

\impliesFAE = AEB = 30° [Alternate angle]

\impliesFAD = DC = 60° [Alternate angle]

\large\underline\mathrm{∆ACD \: is \: a \: right \: triangle}

\impliesAC/CD = tan 60°

\implies60/DC = √3

\impliesDC = 60/√3

\impliesDC = 20√3

\impliesDC = BC

\impliesBC = 20√3m

\large\underline\mathrm{∆ABE \: is \: a \: right \: triangle}

\impliesAB/BE = tan 30°

\impliesAB/20√3 = 1/√3

\impliesAB = 20m

\impliesBC = AC - AB

\impliesBC = 60 - 40

\impliesBC = 40

\impliesBC = ED

\impliesED = 40m

\large\underline\mathrm{hence,}

\large\underline\mathrm{the \:  height \: of \: the \: tower \: is \: 40m.}

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions