Math, asked by Anonymous, 10 months ago

From the window (60 m high above the ground) of a house in a street, the angles of elevation and depression of the top and foot of another house on the opposite side of the street are 60° and 45° respectively. Find the height of the opposite house.

Answers

Answered by BrainlyRaaz
86

S O L U T I O N :

Refer to the attached figure,

B and C the height of the opposite house is BC.

Let BC be x .

The window (60 m high above the ground) of a house in a street. [Given]

Hence AD= 60 .

Use √3 as 1.732 .

Also use tan Ф = ( side opposite to Ф ) / ( side adjacent to Ф )

Use tan 45 = 1 .

Use tan 60 = 1/√3 .

∠ACB = 60°

∠ADB = 45°

In Δ ABD ,

tan 45° = AB /BD

➮ tan 45° = 75/BD

➮ 1 = 60/BD

➮ BD = 60

From the figure we have BD + DC = BC

➮ 60 + x = BC

In Δ ABC ,

tan 60° = AB/BC

➮ 1/√3 = 60 / ( 60 - x )

➮ 60 - x = 60√3

➮ x = 60√3 + 60

➮ x = 60 ( √3 + 1 )

➮ x = 60 ( 1.732 + 1 )

➮ x = 60 × 2.732

➮ x = 163.92

Therefore, the height of the opposite house is 163.92m.

Attachments:
Answered by Anonymous
282

\rule{200}3

\large{\red{\underline{\tt{Figure\::-}}}}

\setlength{\unitlength}{1.5cm}\begin{picture}(10,10) \thicklines \put(0,0){\line(1,0){2}}\put(0,0){\line(0,1){2}}\put(2,0){\line(0,1){4}}\put(0,2){\line(1,0){2}}\put(0,2){\line(1,-1){2}}\put(0,2){\line(1,1){2}}\put(-0.2,-0.2){$A$}\put(2,-0.2){$B$}\put(2.2,2){$C$}\put(2.2,4){$D$}\put(-0.2,2){$E$}\put(-0.6,1){$60\;m$}\put(0.5,1.6){$45^{\circ}$}\put(1.38,0.15){$45^{\circ}$}\put(0.4,2.1){$60^{\circ}$}\qbezier(0.2,2.2)(0.3,2.1)(0.21,2)\qbezier(0.3,2)(0.27,1.9)(0.2,1.78)\put(2.3,3){$x$}\end{picture}

\rule{200}3

\large{\red{\underline{\tt{Solution\::-}}}}

In ∆BAE,

\:\:

\dashrightarrow \:\sf \dfrac{EA}{AB} = tan \: 45^{\circ}

\:\:

\dashrightarrow\: \sf \dfrac{60}{y} = 1 (Let AB = y )

\:\:

\dashrightarrow \:\sf y = 60\:m

\:\:

In ∆DCE,

\dashrightarrow \:\sf \dfrac{DC}{CE} = tan\:60^{\circ}

\:\:

\dashrightarrow \:\sf \dfrac{x}{60} = \sqrt{3}

\:\:

\dashrightarrow \:\sf x = 60\sqrt{3}

\:\:

Therefore, height of opptosite house = ( x + 60 )m

\:\:

\dashrightarrow \:\sf \left (60 + 60\sqrt{3} \right)m

\:\:

\dashrightarrow\: \sf 60 \left (1 + \sqrt{3}\right)m

\:\:

\dashrightarrow\: \sf 60 \times (1.732 + 1)\:\:\:\: \pink{\sf (\because  \sqrt{3} = 1.732)}

\:\:

\dashrightarrow\: \sf 60 \times (2.732)

\:\:

\gray\dashrightarrow\: \huge\underline{\boxed{\gray{\sf 169.92\:m}}} \dagger

Therefore, the height of the opposite house is 169.92m.

\rule{200}3

Similar questions