from what electron (e-) portion(p+) and newton(n0) made up of
Answers
Answer:
The electron is a subatomic particle, symbol
e−
or
β−
, whose electric charge is negative one elementary charge.[9] Electrons belong to the first generation of the lepton particle family,[10] and are generally thought to be elementary particles because they have no known components or substructure.[1] The electron has a mass that is approximately 1/1836 that of the proton.[11] Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. Being fermions, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle.[10] Like all elementary particles, electrons exhibit properties of both particles and waves: they can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavelength for a given energy.
Explanation:
Dalton's Atomic Theory explained a lot about matter, chemicals, and chemical reactions. Nevertheless, it was not entirely accurate, because contrary to what Dalton believed, atoms can, in fact, be broken apart into smaller subunits or subatomic particles. We have been talking about the electron in great detail, but there are two other particles of interest to us: protons and neutrons. We already learned that J. J. Thomson discovered a negatively charged particle, called the electron. Rutherford proposed that these electrons orbit a positive nucleus. In subsequent experiments, he found that there is a smaller positively charged particle in the nucleus which is called a proton. There is also a third subatomic particle, known as a neutron.
Electrons
Electrons are one of three main types of particles that make up atoms. Unlike protons and neutrons, which consist of smaller, simpler particles, electrons are fundamental particles that do not consist of smaller particles. They are a type of fundamental particles called leptons. All leptons have an electric charge of −1 or 0 . Electrons are extremely small. The mass of an electron is only about 1/2000 the mass of a proton or neutron, so electrons contribute virtually nothing to the total mass of an atom. Electrons have an electric charge of −1 , which is equal but opposite to the charge of a proton, which is +1 . All atoms have the same number of electrons as protons, so the positive and negative charges "cancel out", making atoms electrically neutral.
Unlike protons and neutrons, which are located inside the nucleus at the center of the atom, electrons are found outside the nucleus. Because opposite electric charges attract each other, negative electrons are attracted to the positive nucleus. This force of attraction keeps electrons constantly moving through the otherwise empty space around the nucleus. The figure below is a common way to represent the structure of an atom. It shows the electron as a particle orbiting the nucleus, similar to the way that planets orbit the sun. This is however, an incorrect perspective, as quantum mechanics demonstrates that electrons are more complicated.
Protons
A proton is one of three main particles that make up the atom. Protons are found in the nucleus of the atom. This is a tiny, dense region at the center of the atom. Protons have a positive electrical charge of one (+1) and a mass of 1 atomic mass unit (amu) , which is about 1.67×10−27 kilograms. Together with neutrons, they make up virtually all of the mass of an atom.
Neutrons
Atoms of all elements—except for most atoms of hydrogen—have neutrons in their nucleus. Unlike protons and electrons, which are electrically charged, neutrons have no charge—they are electrically neutral. That's why the neutrons in the diagram above are labeled n0 . The zero stands for "zero charge". The mass of a neutron is slightly greater than the mass of a proton, which is 1 atomic mass unit (amu) . (An atomic mass unit equals about 1.67×10−27 kilograms.) A neutron also has about the same diameter as a proton, or 1.7×10−15 meters.
As you might have already guessed from its name, the neutron is neutral. In other words, it has no charge whatsoever and is therefore neither attracted to nor repelled from other objects. Neutrons are in every atom (with one exception), and they are bound together with other neutrons and protons in the atomic nucleus.
Before we move on, we must discuss how the different types of subatomic particles interact with each other. When it comes to neutrons, the answer is obvious. Since neutrons are neither attracted to nor repelled from objects, they don't really interact with protons or electrons (beyond being bound into the nucleus with the protons).
Even though electrons, protons, and neutrons are all types of subatomic particles, they are not all the same size. When you compare the masses of electrons, protons, and neutrons, what you find is that electrons have an extremely small mass, compared to either protons or neutrons. On the other hand, the masses of protons and neutrons are fairly similar, although technically, the mass of a neutron is slightly larger than the mass of a proton. Because protons and neutrons are so much more massive than electrons, almost all of the mass of any atom comes from the nucleus, which contains all of the neutrons and protons
full explainetion