Math, asked by rigayan551, 7 months ago

full solution send kro
show that kro​

Attachments:

Answers

Answered by Anonymous
11

Step-by-step explanation:

\sf\large\underline\pink{Answer:-}

 \displaystyle \sf \star \:  {(\frac{3a}{5}  -  \frac{5b}{3} )}^{2}  + 2ab =  \frac{ {9a}^{2} }{25}  +  \frac{ {25b}^{2} }{9}

From LHS

\displaystyle \sf \star \:  {(\frac{3a}{5}  -  \frac{5b}{3} )}^{2}  + 2ab =  \frac{ {9a}^{2} }{25}  +  \frac{ {25b}^{2} }{9}  \\  \\  \displaystyle \sf \implies\frac{ {9a}^{2} }{25}  +  \frac{ {25b}^{2} }{9}  - 2 \frac{3a}{5}  \frac{5b}{3}  + 2ab  \:  \: \\  \\ \displaystyle \sf \implies \:  \frac{ {9a}^{2} }{25}  +  \frac{ {25b}^{2} }{9}  -  \frac{30ab}{15}  + 2ab \:   \:  \: \\  \\ \displaystyle \sf \implies \:  \frac{ {9a}^{2} }{25}  +  \frac{ {25b}^{2} }{9}  -  \frac{30ab + 30ab}{15}  \\  \\ \displaystyle \sf \implies \:  \boxed{ \underline{ \bold{ \frac{ {9a}^{2} }{25}  +  \frac{ {2b}^{2} }{9} }}}

\sf\large\underline\pink{Answer\:\:\:2:-}

 \displaystyle \sf \star \: ( {x}^{2}  -  {y}^{2} )( {x}^{2}   +  {y}^{2} ) + ( {y}^{2}  -  {z}^{2} ) ( {y}^{2}   +   {z}^{2} ) + ( {z}^{2}  -  {x}^{2} ) ( {z}^{2}   +  {x}^{2} ) = 0

From LHS

 \displaystyle \sf \star \: ( {x}^{2}  -  {y}^{2} )( {x}^{2}   +  {y}^{2} ) + ( {y}^{2}  -  {z}^{2} ) ( {y}^{2}   +   {z}^{2} ) + ( {z}^{2}  -  {x}^{2} ) ( {z}^{2}   +  {x}^{2} ) = 0 \\  \\  \displaystyle \sf \implies \: ( {x}^{4}  -  {y}^{4} ) + ( {y}^{4}  -  {z}^{4} ) + ( {z}^{4}  -  {x}^{4} ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \implies {x}^{4}  -  {y}^{4}  +  {y}^{4}   -  {z}^{4}  + {z}^{4} -  {x}^{4}  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions