Math, asked by fahimabrarcox162, 1 day ago

function answer these​

Attachments:

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

f(x) = 1 +  \dfrac{1}{x - 1}

 \implies \: f(x) =  \dfrac{x  - 1 + 1}{x - 1}

 \implies \: f(x) =  \dfrac{x }{x - 1}

Here, x ≠ 1,

Now,

 \implies \: f(f(x)) =  \dfrac{f(x)}{f(x) - 1}

 \implies \: f(f(x)) =  \dfrac{ \dfrac{x}{x - 1} }{ \dfrac{x}{x - 1} - 1}

 \implies \: f(f(x)) =  \dfrac{ \dfrac{x}{x - 1} }{ \dfrac{x - x + 1}{x - 1} }

 \implies \: f(f(x)) =  \dfrac{ x }{x - x + 1 }

 \implies \: f(f(x)) =  x

Now,

 \implies \: f(f(x)) =  f(x)

 \implies \: x=   \dfrac{x}{x - 1}

 \implies \: x^{2}  - x=  x

 \implies \: x^{2}  - 2x= 0

 \implies \: x(x - 2)= 0

 \implies \: x = 0 \:  \:  \:  \: or \:  \:  \:  \: x  = 2

Similar questions