Math, asked by Moana5065, 7 months ago

Fund the Cirucmcenter of the triangle whose sides are x+y+2=0, 5x-y-2=0, x-2y+5=0

Answers

Answered by shadowsabers03
19

Let us find the three vertices of the triangle.

Find value of y in x+y+2=0 and substitute it in 5x-y-2=0 and x-2y+5=0 each.

So,

\longrightarrow x+y+2=0

\longrightarrow y=-x-2

And in,

\longrightarrow 5x-y-2=0

substituting value of y,

\longrightarrow 5x-(-x-2)-2=0

\longrightarrow 5x+x+2-2=0

\longrightarrow6x=0

\longrightarrow x=0

And then,

\longrightarrow y=-x-2

\longrightarrow y=-0-2

\longrightarrow y=-2

Thus (0, -2) is a vertex.

And in,

\longrightarrow x-2y+5=0

\longrightarrow x-2(-x-2)+5=0

\longrightarrow x+2x+4+5=0

\longrightarrow 3x+9=0

\longrightarrow x=-3

And then,

\longrightarrow y=-x-2

\longrightarrow y=-(-3)-2

\longrightarrow y=1

Thus (-3, 1) is a vertex.

Consider,

\longrightarrow 5x-y-2=0

\longrightarrow y=5x-2

And in,

\longrightarrow x-2y+5=0

substituting value of y,

\longrightarrow x-2(5x-2)+5=0

\longrightarrow x-10x+4+5=0

\longrightarrow -9x+9=0

\longrightarrow x=1

And then,

\longrightarrow y=5x-2

\longrightarrow y=5(1)-2

\longrightarrow y=3

Thus (1, 3) is a vertex of the triangle.

So (0, -2), (-3, 1) and (1, 3) are vertices of the triangle.

Let (a, b) be the coordinates of the circumcenter of the triangle, which is equidistant from the points (0, -2), (-3, 1) and (1, 3) each.

Then by distance formula,

\longrightarrow\sqrt{(a-0)^2+(b+2)^2}=\sqrt{(a+3)^2+(b-1)^2}

\longrightarrow a^2+b^2+4b+4=a^2+6a+9+b^2-2b+1

\longrightarrow 4b+4=6a-2b+10

\longrightarrow b=a+1\quad\quad\dots(1)

And,

\longrightarrow\sqrt{(a-0)^2+(b+2)^2}=\sqrt{(a-1)^2+(b-3)^2}

\longrightarrow a^2+b^2+4b+4=a^2-2a+1+b^2-6b+9

\longrightarrow 4b+4=-2a-6b+10

\longrightarrow 10b=-2a+6

From (1),

\longrightarrow 10(a+1)=-2a+6

\longrightarrow 10a+10=-2a+6

\longrightarrow a=-\dfrac{1}{3}

And then,

\longrightarrow b=a+1

\longrightarrow b=-\dfrac{1}{3}+1

\longrightarrow b=\dfrac{2}{3}

Hence the circumcenter of the triangle is,

\longrightarrow\underline{\underline{(a,\ b)=\left(-\dfrac{1}{3},\ \dfrac{2}{3}\right)}}

Similar questions